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Executive Summary 
 
The Florida 5th Edition (2014) Code will require that houses be tested for envelope air leakage and will 
not permit leakage in excess of 5 ACH50. At the same time, the new International Mechanical Code 
requires that mechanical ventilation, also known as outdoor air (OA), be provided for any house that has 
less than 5 ACH50. Given that natural forces that drive natural infiltration in Florida buildings are 
relatively small, there is a reasonable expectation that new mechanically vented Florida homes will 
experience greater air change rates and increased latent loads. Of further consideration is the trend for 
homes to be built with more energy efficiency and thus lower sensible loads resulting in less runtime of 
central cooling systems, particularly during swing seasons. With increased latent load from required OA, 
there is the concern of adequate indoor relative humidity (RH) control for at least periods of time. 
Supplemental dehumidification may therefore be necessary in some homes where RH is desired to be 
controlled.  
 
The Florida Department of Business and Professional Regulation (DBPR) has contracted with the Florida 
Solar Energy Center (FSEC) with the primary objective to identify approaches and technologies which 
can achieve energy-efficient latent (indoor RH) control in light of requirements that may increase overall 
ventilation rates in Florida homes. The work has been proposed to be completed in two phases. This 
report covers the work proposed in the first phase to be completed June 15, 2014. 
The primary scope of work of phase 1 consists of two tasks: 

1. Assess energy efficiency and cost-effectiveness of various approaches to manage the latent load 
in homes from a literature review and existing experimental data. 

2. Complete a minimum of four different experiments in a lab building to assess resulting indoor 
RH and energy consumption. The experiments are to use various latent load management 
approaches (including a dehumidifier) at various levels of mechanical ventilation. 

 
Review of the most recent existing literature on indoor RH control in homes in hot and humid climates 
has identified several supplemental dehumidification options, but there are several factors that have to 
be considered in selecting one, therefore no single measure can simply standout. Factors to be 
considered are: 
• Health needs of occupants 
• House design  

o Variability of solar exposure throughout the day and year 
o Availability of physical space to locate supplemental dehumidification equipment 
o Type of construction and interior finishes- Homes with minimal internal moisture 

capacitance will have faster rates of change in interior RH (finished concrete or tile floors 
and minimal soft cloth-type furniture and furnishings).  

• Occupant driven operations 
o Indoor temperature set point preferences -Low cooling set point can result in high wall 

surface humidity, under certain conditions, even if occupant is comfortable. 
o Excessive runtime of bath or large kitchen exhaust system 
o Large internal latent load generation 

• Personal comfort / ascetic preferences 
o No supplemental dehumidification may be desired or needed if house interior is kept 

relatively warm and there is a preference for elevated humidity. 
o Preference for equipment to be unseen and unheard may make some options less desirable. 

• First cost and operational cost 
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 Cost is a significant factor and varies widely. The lowest first cost options, overcooling and reduced fan 
speed will not adequately control RH for all hours of the year. Dehumidifiers may have the lowest first 
cost of options that can control RH year round, but are least energy efficient of all other mechanical 
measures. Full-condensing and sub-cooling reheat integrated with the central cooling system will 
operate more efficiently than dehumidifiers at an estimated cost just under $2000.  Another potentially 
effective technology near the $2000 range is the regenerated desiccant dehumidifier, which can use 
waste heat from any source such as the DX cooling system, or even renewable energy resources. What is 
lacking is available monitored performance data from the full-condensing, sub-cooling and desiccant 
dehumidifier systems in hot humid climates. 
 
Given the costs, one must seriously consider how important it is to maintain humidity within a specific 
range. An ideal specific level of RH control is debatable and specific needs of occupants must be 
considered given variability in personal comfort preferences and health considerations. Generally, RH 
maintained at or below 60%RH is considered reasonable for Florida. Consideration of specific 
supplemental dehumidification equipment options shown in this report should also consider the 
differences in climate within Florida. For instance, Miami has much more annual cooling driven hours 
and shorter swing season than Tallahassee, therefore sensible driven supplemental dehumidification 
options will offer better RH control than in northern Florida.  
 
Experimental work completed, fulfilling task 2 of this project, evaluated the resulting indoor RH and 
energy consumption of four different test configurations. The configurations focused on two potentially 
energy-efficient configurations at two different ventilation rates with a dehumidifier controlled by a 
remote dehumidistat set at 60%RH.  The four different test configurations were: 
• Test 1: involved 130 cfm OA ducted to the return of a SEER 19 variable capacity minisplit (MS) with 

central space cooling provided by SEER 21 variable capacity central ducted heat pump.  
• Test 2: same as Test 1 except with OA at 60 cfm.  
• Test 3: Turn off the MS and duct 60 cfm OA to the return of a high efficiency (SEER 21) variable 

capacity system.  
• Test 4: same as the Test 3 except with OA at 130 cfm. 
 
All four test methods were able to maintain indoor RH in the range from 47%-52%RH with outdoor 
dewpoints near 70°F, therefore the dehumidifier never operated. This experimental research has found 
promising results for using very high efficiency (SEER 21) variable capacity central ducted heat pumps 
with mechanical ventilation ducted to the return intake. The SEER21 variable capacity central system 
offers an energy-efficient method of combined space cooling and good RH control in mechanically 
ventilated buildings. At a high OA flow rate of 130 cfm (about twice the rate for typical homes) captured 
at the return of the central unit, the highest hourly indoor RH reading on a warm moist day was 54.0%. 
This is not to say that there would never be any hours with indoor RH>60% throughout the year, but 
they are expected to be few given that these systems can operate as low as 40% of nominal capacity. 
This method used about 14% less seasonal daily energy than the method where OA is captured at the 
MS return and the SEER21 central system provides cooling as needed.  
 
Work in this first phase had only enough time to evaluate two different methods at two different 
ventilation rates. The weather during the experiments offered very limited days with elevated 
dewpoints to work with. A second phase already proposed is very important to evaluate more latent 
load approaches and collect more data for experiments during more variable weather. Four additional 
test configurations are discussed in more detail in the Conclusion section of this report.
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Introduction 
 

The new Florida 5th Edition (2014) Code will require that houses be tested for envelope air leakage and 
will not permit leakage in excess of 5 ACH50. At the same time, the new International Mechanical Code 
requires that mechanical ventilation be provided for any house that has less than 5 ACH50.  This 
practically means that new Florida houses will be required to have mechanical ventilation. Because 
infiltration forces such as wind and temperature are substantially lower in Florida than in other parts of 
the country, natural infiltration often does not provide the required air change rate. Mechanical 
ventilation reintroduces a considerable portion of the outdoors-to-indoors air exchange that was 
eliminated by house tightening. Florida code ventilation requirements follow the 2012 International 
Residential Code (IRC) or 2012 International Mechanical Code (IMC). The differences between these two 
are discussed further in the Background section of this report.   

Given that Florida home natural ventilation rates are much lower than required mechanical ventilation, 
there is an expected overall increase in latent load from ventilation. With an increase in latent load and 
the variability in sensible loads throughout the cooling season that primarily drive cooling and 
dehumidification, it is of concern that some air conditioning systems may not adequately control indoor 
relative humidity (RH) with continuous mechanical ventilation.  

The primary objective of this work is to identify approaches and technologies which can achieve energy-
efficient latent control in light of requirements that may increase overall ventilation rates in Florida 
homes. The work has been proposed to be completed in two phases. This report covers the work 
proposed in the first phase to be completed by June 15, 2014. 

The primary scope of work of phase 1 is summarized below in the following two tasks: 

1) Assess energy efficiency and cost-effectiveness of various approaches to managing the latent 
load in homes from a literature review and existing experimental data. 

2) Complete a minimum of four different experiments in a lab building to assess resulting indoor 
RH and energy consumption. The experiments are to use various latent load management 
approaches (including a dehumidifier) at various levels of mechanical ventilation. 

The second phase is proposed to continue the experimental work of task 2 above evaluating more latent 
load approaches and collecting more data for experiments during higher outdoor dewpoint periods. 
Good RH control becomes more challenging during the cooling season on days when the outdoor 
dewpoint is greater than 65° F. Typical summer outdoor dewpoints run between 72°F-76° F, but 
outdoor latent load is just beginning to increase May through early June with lower dewpoints in the 
range 60°F-70°F. It is imperative that the second phase be completed to provide more expansive and 
meaningful results through November. This would provide much needed testing under the challenging 
outdoor conditions of lower outdoor sensible, but high latent loads such as a cooler day with outdoor 
dewpoint of 72°F.    
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Background 
 

The thermal efficiency of homes has improved in recent decades. Most of those improvements have 
reduced the amount of sensible heat load on the house (sensible heat is associated with temperature 
rise, while latent heat is associated with energy embodied in water vapor in the air). Wall and attic 
insulation, improved duct insulation, and improved windows have reduced sensible loads on homes, 
which have brought about smaller air conditioning systems and caused these systems to operate less. 
Reduced operation can lead to a reduction in water vapor removal, and the potential for an increase in 
indoor humidity. While external sensible loads have been reduced, there has been a growing trend of 
increased internal sensible loads over time. More electronic devices are operating in homes producing 
additional internal sensible heat gains. 

Another trend is that natural air infiltration has declined in recent decades. House air tightness is 
measured as an air flow rate at 50 pascals of pressure. The result is normalized by dividing by the house 
volume and is represented as air changes per hour at 50 pascals or ACH50. The work of (McIlvaine et al. 
2013) show a trend of increased tightening in each of the decades from the 1960s to 2000s. House air 
tightness has declined from an average 18.2 ACH50 (n=12) in the 1960s to an average 6.3 ACH50 (n=7) in 
homes built in the first decade of 2000 (McIlvaine et al. 2013). A study of house air tightness of homes 
built under the Florida 2009 code found homes about 11% tighter than the 2000 decade homes of the 
McIlvaine study with an average of 5.6 ACH50 (n=31) (Withers et al. 2012).  

Since about 85% of the cooling load associated with air entering from outdoors during hot and humid 
weather is latent heat (water vapor) and only about 15% is sensible heat, the tightening of homes has 
greatly reduced the amount of water vapor that must be removed by the air conditioning system. 
Tightening of duct systems has also substantially reduced the amount of water vapor entering the 
house.  

However, codes that require very tight homes need to address IAQ. Thus the need arose to provide 
treated OA to homes by means of mechanical ventilation. Nationally ASHRAE Standard 62.2 is 
considered by some as an indoor air quality standard for residential ventilation, however Florida code 
(2012 International Energy Conservation Code) specifically references that ventilation meet the 
requirements of the International Residential Code (IRC) or International Mechanical Code (IMC). The 
IMC 2012 simply applies 15cfm to each bedroom plus another 15 cfm. The IRC 2012 requirements are 
indicated in Table M1507.3.3(1) and have a prescribed ventilation rate based upon different ranges of 
house area and number of bedrooms. They both have the exact same 60 cfm requirement for 3 
bedroom homes between 1501ft2-3000 ft2  (which covers most homes), however there is variance in 
requirements between the two depending upon house size and number of bedrooms. Take for example 
a 1510 ft2 retirement home with 2 bedrooms.  IMC 2012 would require 45cfm OA whereas IRC 2012 
requires 60cfm. Calculating OA using ASHRAE 62.2 is more involved requiring inputs such as airtightness 
test data, floor area, number of bedrooms, and height of ceiling. A 2000 ft2 home with 3 bedrooms and 
airtightness of about 5 ACH50 would require 60 cfm. However, the mechanical ventilation requirement 
increases as the house tightness increases assuming less natural ventilation occurs. 

Of particular concern is how to maintain acceptable RH when latent load from OA becomes a greater 
fraction of the overall load at times such as overnight or long periods of low heat gain such as swing 
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seasons.  Even without OA, there are several hours of the year when a “properly sized” cooling system 
will be oversized and have limited runtime. The most common way consumers have traditionally tried to 
address high indoor humidity is to either lower the cooling set-point of the central air or operate a 
dehumidifier as needed, neither of which is energy efficient and depending upon the equipment still 
may not result in satisfactory comfort. 

The internal latent gains from occupancy driven activity is another important load on the cooling system 
that must be addressed effectively to maintain acceptable indoor RH.  Key internal moisture sources 
come from cooking, bathing, and dishwashing as well as from occupant perspiration and respiration. 
Work has been done to characterize these types of loads in homes (Hendron 2010). There can be 
enough moisture from these sources to result in elevated indoor RH during mild swing seasons where 
cooling loads may be low. 

The combination of Florida homes becoming more energy-efficient and airtight together with the 
advent of mandatory mechanical ventilation will create new moisture related challenges for the state.  A 
2007 Building Science Corporation (BSC) study involving 43 warm-humid and mixed-humid climate US 
homes (Rudd and Henderson 2007) summarizes these challenges.  The study found that adding 
continuous mechanical ventilation to standard builder practice homes did not consistently raise indoor 
humidity but did in high-performance (low sensible gain) Building America program homes.  The BSC 
report concludes: 

The combination of high-performance, low sensible heat gain buildings and continuous mechanical 
ventilation has significantly increased the number of hours in the year that require dehumidification 
without sensible cooling. Humidity loads in these high-performance homes cannot always be met by 
conventional or enhanced cooling systems, but instead require separate dehumidification. These load 
conditions— which have not typically been observed in standard homes— do not occur during peak 
summer cooling conditions but mostly occur in the swing seasons and may occur during summer nights. 

  

Task 1: Literature Review, Examination of Data and Cost-Effectiveness 
 

Task 1 of this report involves a literature review, examination of existing experimental data and 
assessment of the energy efficiency and cost-effectiveness of various approaches to managing the latent 
load in homes.  The primary goal is to identify approaches and technologies which can achieve energy-
efficient latent cooling in light of requirements that increased ventilation rates be implemented in 
Florida homes. 

Approximately 30 articles, research reports, presentations and code documents were reviewed for Task 
1.  Information sources included the American Society of Heating, Refrigerating and Air-Conditioning 
Engineers (ASHRAE), Building Science Corporation (BSC), CDH Energy Corp., Florida Solar Energy Center 
(FSEC), International Code Council (ICC) and Oak Ridge National Laboratory (ORNL). 
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Indoor Humidity Level Limits 
An important first step in determining appropriate latent control approaches is determining what 
constitutes appropriate indoor humidity levels.  In a 2002 publication, Joe Lstiburek (Lstiburek 2002) 
notes the variety of factors that go into determining proper RH levels: 

…determining the correct range depends on where the home is located (climate), 
how the home is constructed (the thermal resistance of surfaces determines surface 
temperatures), the time of year (the month or season determines surface 
temperatures), and the sensitivity of the occupants.    

A recent Building America Expert Meeting report (Rudd 2013a) that included input from BSC, CDH 
Energy Corp., FSEC and IBACOS summarized several publications: 

A number of references (ASHRAE Standard 55-2010, Balaras and Balaras 2007, 
Wolkoff and Kjaergaard 2007) refer to indoor RH between 30% and 60% as 
comfortable, healthy, and recommended for human occupancy. 

In its Answers to Research Questions section, the same publication further addresses this topic: 

It was generally agreed that, a dehumidification control setpoint of 55%, in order 
to keep indoor RH from exceeding a 60% RH limit, was the correct strategy for 
high performance, low-energy homes. While it is clear that everything will not 
fail at once if the indoor RH goes over 60%, a 60% RH limit provides the best 
practice coverage for providing comfort and durability over a reasonable range 
of varying factors, such as internal moisture generation rate, and occupant 
comfort perception and susceptibility to illness stemming from elevated indoor 
humidity. Included in the variability of internal moisture generation rate is 
construction moisture drying. It has been BSC’s experience that limiting indoor 
RH to 60% via supplemental dehumidification is a generic enough limit to 
remove moisture concerns related to the seasonal timing of building closure and 
occupancy in warm-humid climates. … 

It was generally agreed that annual hours above 60% RH is the single most 
appropriate humidity control performance metric to use to compare system 
performance and to compare required supplemental dehumidification energy. 
That metric does give generally the same result as looking at 4-hour and 8-hour 
events above 60% RH. 
 

The EPA Indoor airPLUS program is designed for improved indoor air quality compared 
to homes built to minimum code. This program specifies using equipment that will keep 
the indoor RH <60% (EPA 2013). The authors consider 60% RH as a reasonable 
recommended indoor control point for supplemental dehumidification in Florida 
homes. It is low enough to protect building degradation and a fair balance between 
energy conservation and comfort. Furthermore, it is an easy setting to find on 
controllers lacking set point markings on the control knob. While we recognize 60% as 
reasonable, individual comfort should be allowed to be accommodated.  What 
constitutes comfort varies by individual and even varies in specific individuals over 

4 
 



time. Occupants with health issues may have more specific requirements that must be 
considered.   

 

Rising Indoor Humidity Levels 
While, there are some factors that tend to increase indoor RH in new construction and other factors that 
tend to decrease RH, a 2014 ASHRAE publication (Henderson and Rudd 2014) indicates that overall RH 
levels are increasing: 

Conventional air conditioners have traditionally been deemed adequate for 
controlling space humidity levels in residential applications. However, as homes in 
humid climates have become more energy efficient, there is evidence that relative 
humidity levels in homes have been increasing (Rudd and Henderson 2007). This 
implies that sensible heat gains to the building have been reduced more than 
moisture loads, leaving a mix of latent and sensible loads that is poorly matched to 
the sensible heat ratio of conventional air-conditioning systems.   

 
The 2013 Building America Expert Meeting report noted above (Rudd 2013a) lists the influences 
modeling has shown to most effect indoor RH in high performance, warm-humid climate homes: 

• Internal moisture generation 
• Internal sensible heat generation 
• Heating setpoint temperature 
• Air distribution system duct location. 

 
Regarding air distribution system duct location, the 2014 ASHRAE publication (Henderson and Rudd 
2014) explains that moving ducts from the attic to the conditioned space reduces sensible heat gains 
more than it reduces latent loads, resulting in higher relative humidity levels. 

Mechanical ventilation also has a significant impact on indoor RH.  A recent monitored FSEC study 
(Parker et. al. 2014) found mechanical ventilation added to a tight (ACH50 2.2) central Florida lab home 
to raise summertime moisture levels by 2% - 5%.   

Another recent monitored FSEC study involving six Gainesville Florida homes (Martin et. al. 2014) also 
noted in FSEC’s concurrent 2014 DBPR ventilation report (Sonne, Vieira 2014) found continuous exhaust 
ventilation (CEV) at approximately ASHRAE 62.2-2010 rates to raise summertime indoor RH by 5% 
compared with runtime only, central fan integrated supply (CFIS) ventilation that provided 
approximately 20% of ASHRAE 62.2-2010 requirements, which is substantially lower than the CEV rates. 
So, one cannot simply conclude from this that CEV raised RH 5% compared to CFIS.  Figure 1 from the 
same study shows significantly more hours of indoor RH > 60% for the homes during continuous exhaust 
ventilation (right bars for sites 1, 2, 4, 6, 8 and 9) versus during runtime ventilation periods. The data 
shown was collected from about June 28 through October 15, 2013. 
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Figure 1: Distribution of hours at various % RH ranges, separated into runtime vent (left bar) and continuous exhaust 
vent (right bar) periods, each corresponding to the left axis (# of hours).  Numeric labels correspond to hours, black 
squares correspond to the right axis (average indoor temperature).  Sites 3 and 5 were always operated with 
continuous exhaust ventilation, and sites 7 and 10 were always operated with runtime ventilation. (figure and 
caption from Martin et. al. 2014)  

The 2014 Building America Expert Meeting report noted above also indicates mechanical ventilation 
caused increases in indoor RH and observes the reasons for the higher level: 

…mechanical ventilation, operated at the ASHRAE 62.2-2010 addendum r rate, in a 3 
ach50 house, raises the annual median indoor RH by almost 10% RH compared to a 7 
ach50 house without mechanical ventilation in Orlando. That is because infiltration 
drivers are generally weak in that climate during floating hours (when it is still humid 
outside and the cooling system is not removing moisture), but mechanical ventilation 
forces a minimum air exchange. 
 

An earlier monitored study (Rudd and Henderson 2007) similarly found continuous whole-house 
ventilation combined with infrequent cooling demand to cause high humidity levels.  Conversely, the 
study report noted that due to low driving forces during mild conditions, a naturally ventilated home 
would not see much ventilation and might as a result have consistently lower humidity. 

As residential mechanical ventilation use has increased over the past several decades, means of 
addressing increasing RH were developed.  A 2014 Building America report (Martin 2014) includes a 
summary of historically successful methods, by several measures of providing mechanical ventilation to 
homes while still maintaining comfort and minimizing moisture issues: 

BA-PIRC (formerly BAIHP) worked with site and factory builders constructing custom, 
production, affordable, and multifamily homes to implement supply-based mechanical 
ventilation through the introduction of outdoor air into the return side of centrally ducted, 
forced-air, space conditioning systems. This approach, combined with rightsized 
heating/cooling systems and properly operating bathroom and kitchen exhaust fans 
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(ducted to the outdoors) has been implemented in thousands of homes, primarily in the 
southeastern United States, since 1997 and has effectively controlled odors, maintained 
comfort, and proven effective at minimizing wintertime moisture buildup (Chandra et al. 
2008). Similar to BSC’s approach, these systems draw outdoor air from a known fresh air 
location, filter the air, temper the air by mixing it with central system return air, and fully 
distribute the air. Systems have been commissioned to deliver approximately 30%–70% of 
ASHRAE Standard 62.2-2010 rates, enough to create a slight positive pressure in the 
home with respect to outdoors; however, only while the central HVAC system is running 
to satisfy a heating or cooling requirement. Therefore, operation of the ventilation system 
is intermittent, especially during periods of limited to no HVAC runtime. In the Southeast, 
these periods typically coincide with increased natural ventilation through more frequent 
window operation, and the system has gained the acceptance of homeowners and 
builders alike in terms of comfort, durability, energy consumption, and perceived odor 
and moisture control. However, most of these systems do not meet the whole-house 
mechanical ventilation requirements of ASHRAE 62.2-2010. 

While these results are very informative, as homes continue to become more energy efficient, likely 
with more stringent airtightness and higher ventilation requirements, additional latent control strategies 
will be required.  Modeling results summarized in the 2013 Building America Expert Meeting report 
(Rudd 2013a) show this need: 

The warm-humid climates of Miami, Orlando, Houston, and Charleston show a clear 
need for supplemental dehumidification for high performance homes. Without 
supplemental dehumidification, hours above 60% RH were in the range of 800 to 1800, 
with hours above 65% being about half of that. Most of the hours of elevated indoor 
humidity occur in the mild temperature but humid outdoor conditions of fall and spring, 
but also occur in winter in Orlando and Miami. A smaller number of hours occur during 
some summer nights and days-long rainy periods. Few hours above 60% RH occur 
during heating hours. Most hours between 60%-65% RH occur during either cooling or 
floating hours, and most hours above 65% RH occur during floating hours.   
 

Ventilation Strategies   
Florida Code permits mechanical ventilation to be provided in a variety of ways. It may be provided by 
exhaust only, supply only or combinations of both.  It is important to realize that some ventilation 
methods may result in un-intended consequences under certain conditions. While it may have worked in 
many homes without any observed consequences, an exhaust only method of ventilation in Florida is 
not recommended here. An exhaust dominated building will operate under negative pressure. Air will 
come into the home wherever leaks are located. Ventilation air in an exhaust only home will consist of a 
blend of outdoor air through window and doors, air from an attached garage, and attic air. The fact is 
there is no way to know where the air is coming in from or the quality of it. Depressurization in a tight 
home can enhance the transport of soil gases such as radon into the home or pollutants from attached 
garages into the home. In Florida’s warm-humid climate, exhaust ventilation is also not recommended 
as it creates negative pressure in the home with respect to outdoors which in turn can pull water vapor 
into building materials. If the home is kept cold enough or a vapor barrier such as vinyl wall paper is on a 
wall exposed to high moisture content, then high wall surface humidity may occur creating mold and 
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possibly building damage. Therefore an exhaust only method of ventilation is not recommended in this 
report and has the potential to be more detrimental than an under-ventilated home. The topic of 
airtightness and potential consequences is covered in more detail in a parallel home airtightness and 
ventilation DBPR research report (Sonne and Vieira 2014). 
 
 
The best method of ventilation is through either a balanced or positive pressure approach. The balanced 
approach may be used by simply supplying the same amount of OA as is used in an exhaust method. The 
supply air should at least be filtered and ideally conditioned before being dumped into the home. Energy 
Recovery Ventilators (ERV) exchange some of the cooling energy content of conditioned exhaust air to 
the OA supply and can provide a balanced house air pressure. It is important that ERV be designed and 
installed well as well as maintained to ensure that the air flow balance occurs over time. Another 
method simply providing supply air can also be used. Best practice in using this method is to filter it and 
drop it at the return of a central cooling or other space conditioning system. Dropping the supply OA 
into the conditioned space away from space conditioning return will result in elevated indoor RH (during 
cooling season) in at least the vicinity of the OA termination. This area may be warm and humid 
depending upon conditions of the OA and the size of the space it terminates into. Terminating close to a 
thermostat may result in overcooling areas of the home.   
 

Latent Control Approaches and Technologies  
While the goal of this research is to identify energy efficient and cost-effective approaches to managing 
latent loads, it should be noted that even highly energy-efficient solutions will add some energy use as 
removing latent energy requires energy.  
 
The following section provides a listing of dehumidification technology options identified with an 
overview and performance and cost effectiveness discussion for each.  Note that several of the options 
require a sensible (heat) cooling load so are not seen as “stand alone” supplemental dehumidification as 
much as air conditioning latent enhancement.  
 

Overcooling 
Overview: This strategy involves reducing the thermostat set point temperature below the desired 
temperature by two to three degrees while at the same time lowering the airflow rate to increase 
air conditioner run times and in turn remove additional moisture.   

Performance and Cost Effectiveness:  Simply overcooling a space will increase the runtime and 
remove moisture, but may not reduce the RH much resulting in a cold and clammy feeling. Modeling 
work reported in a 2013 Building America Expert Meeting publication (Rudd 2013a) showed this 
strategy (reducing the set point by 3oF and at the same time lowering the airflow rate from 375 
cfm/ton to 210 cfm/ton) to reduce hours above 60% RH by 95% in Miami and 50% in Orlando.  The 
key here is that the airflow rate was reduced to make the coil colder which lowers sensible heat 
ratio (SHR). Drawbacks include increased energy use, the possibility of comfort issues from 
overcooling and inadequate moisture removal during swing seasons and other mild temperature 
periods when air conditioning isn’t called for.  In his 2013 supplemental dehumidification 
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publication, Rudd (Rudd 2013b) estimates the cost of lowering the setpoint of a HERS Index 50 
house by 2oF together with lowering the airflow rate at less than $10/yr. While the cost appears low, 
it should be kept in mind that this is not completely effective at keeping all hours of the year under 
60% RH. 

 

Fan Airflow Adjustments   
Overview:  Air handler fan adjustments that can potentially reduce moisture levels in homes include 
1) reducing airflow and 2) controlling fan end times.  Reducing the airflow of variable fan speed air 
conditioners reduces the cooling coil temperature which in turn increases the latent capacity and 
decreases the sensible capacity of these systems, increasing run times and reducing moisture levels 
in homes.  Controlling air hander fan end times to minimize evaporation off of the coil (e.g. not 
running the fan for a period of time after the compressor shuts off) also reduces indoor moisture 
levels. 

Performance and Cost Effectiveness:  While the increased latent capacity increases overall AC 
energy use (Parker et. al. 1997) for both fan adjustment strategies, there is no extra up front 
equipment cost. There would be a contractor cost of about 1 hour to implement these changes. 
Controlling fan run on time may not be an option with many systems. These strategies cannot be 
used during mild weather when no air conditioning is called for (or would require overcooling the 
space under these conditions) they are not adequate latent control approaches by themselves. 

 

Energy Recovery Ventilation  
Overview:  Energy recovery ventilators (ERVs) use air-to-air heat exchangers to recover sensible and 
latent energy from building exhaust air and supply pre-conditioned outdoor air to the conditioned 
space. They could be considered to be a supplementary dehumidification device in that they are able 
to reduce a portion of the latent load in ventilation, but not all of it at all times. This measure will 
only work when the indoor air is maintained at dry conditions (dewpoints around 55°F or so) by a 
central cooling system. 

Performance and Cost Effectiveness:  A 2007 monitored study (Rudd and Henderson 2007) showed 
indoor humidity to be controlled “reasonably well” by an ERV during summer cooling periods, but 
also that during mild conditions the ERV provided practically no dehumidification.  Similarly, 
modeling work reported in the 2014 Building America mechanical ventilation report (Martin 2014) 
showed ERVs to nearly eliminate indoor hours above 60% RH during cooling periods for a DOE 
Challenge Home level efficiency home but were not found to be effective in limiting indoor RH 
during floating periods with small differences between indoor and outdoor dew point temperatures. 
Comparing balanced ERV ventilation to exhaust ventilation as a reference, the modeling work 
showed ERV use in a DOE Challenge Home level home to, on average, add $20/yr in energy cost at 
100% of the ASHRAE 62,2-2010 ventilation rate in an ACH50 3 home, but to save $20/yr at higher 
ventilation rates required for an ACH50 1.5 home. Costs for ERV can range from about $700-$1400. 
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Heat Pipes 
Overview:  Heat pipes, also called run-around coils, circulate heat transfer fluid through heat 
exchangers on either side of the cooling coil to precool air entering the coil and reheat air leaving the 
coil.  This allows the coil to stay colder and in turn remove more moisture from the air while 
overcooling the conditioned space is also reduced. This is uncommon in residential applications, but 
is used effectively in commercial buildings. 

Performance and Cost Effectiveness:  Modeling work reported in the same 2013 Building America 
Expert meeting publication reference above (Rudd 2013a) showed heat pipes were less effective in 
reducing indoor humidity than the overcooling strategy with low airflow but still able to reduced 
hours above 60% RH significantly.  One model showed RH above 60% to be reduced by about 90% in 
Miami and 30% in Orlando while another model showed Orlando hours above 60% RH to be reduced 
by almost 50%.  It was estimated that increased static pressure and fan energy use for the heat pipe 
system resulted in a 20% to 25% increase in space conditioning cost.  Since, like the fan flow 
adjustment and overcooling options discussed above, heat pipes only operate while the air 
conditioner is running, they also are not adequate latent cooling approaches by themselves since 
they can’t be used during mild weather when no air conditioning is called for.  Costs for residential 
applications may be somewhere in the range from $2000-$3000. 

 

Dehumidifiers 
Overview:  The most common type of dehumidifier uses the refrigeration cycle to remove moisture 
from the air.  Since the condenser coil is packaged with the unit and air is not exhausted to outdoors, 
the space is also heated as part of the process.  Dehumidifier types include stand-alone, ducted and 
gas-fired desiccant varieties.   

Performance and Cost Effectiveness: A 2002 monitored study that studied a range of 
dehumidification strategies including several dehumidifier configurations, ERVs, and a two-stage 
compressor (Rudd et. al. 2002) concluded that a hall closet located standard dehumidifier provided 
the best overall value (considering humidity control, first cost and operating cost).  Modeling work 
reported in the 2013 Building America Expert Meeting publication (Rudd 2013a) showed all three 
types of dehumidifiers identified above to eliminate hours over 60% RH in Orlando and Miami.  The 
gas-fired desiccant option had the lowest operating cost but also has the highest installed cost, 
estimated by Rudd (Rudd 2013b) at $2,000.  The ducted dehumidifier had the next lowest operating 
cost. The estimated installed cost of a ducted dehumidifier can vary widely from about $1,000  -
$2,000 depending upon capacity, space requirements and if a condensate pump is needed. The 
stand-alone unit had the highest operating cost of the three, but is the least expensive. The 
estimated installed cost can be as low as $400, but can quickly climb to as much as $2000 for quiet 
high capacity systems with a remote dehumidistat. 
 
The 2014 Building America report (Martin 2014) indicates a $10-$30 annual cost for supplemental 
dehumidification to control indoor RH to 60% in the warm-humid climates of Charleston, Houston, 
Orlando and the marine climate of Los Angeles.  The report also provides some additional 
dehumidifier performance considerations however that suggest actual operating costs will be higher:  
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However, a caveat was provided that indicates that this value is predicated on an 
operating dehumidifier energy factor of 1.47 L/kWh, and recent field data indicate 
that conventional dehumidifiers operate closer to 0.8 L/kWh (Mattison and Korn 
2012), which would  tend to double this cost. Additionally, dehumidifiers tend to 
operate on a large humidity dead band, which means that maintaining humidity 
below 60% would likely require humidity set points near 55%, which could 
dramatically increase dehumidification costs.   

 

Dual Capacity Air Conditioners 
Overview:  Dual capacity air conditioners are similar to traditional single-speed air conditioners 
except they provide cooling at two specific capacities, which allows them to run at a lower capacity 
most of the time increasing runtime, then go to a higher capacity during peak cooling conditions. 
Some manufacturers set the first stage at 50% of total capacity and others around 75% of total 
capacity. 

Performance and Cost Effectiveness:  Based on modeling results, the 2014 ASHRAE humidity control 
options report (Henderson and Rudd 2014) indicated no appreciable reductions in hours above 60% 
RH for two-speed air conditioning unless coupled with reduced airflow and/or overcooling. Contrary 
to the(Henderson and Rudd 2014) modeling results, the author has observed improved indoor RH 
control using dual capacity systems compared to a single capacity system without overcooling, but it 
will not eliminate all hours of RH>60%. How well the first stage capacity meets swing season loads is 
an important factor in how much it will operate an limit hours of RH>60%.  

 

Variable Speed Air Conditioners 
Overview:  Variable speed air conditioners and heat pumps are very high efficiency (SEER 21 to 24+) 
space conditioning systems which achieve much of their efficiency operating below their nominal 
rated capacity and limited cycling on and off. They run about twice as long as fixed capacity systems 
(Cummings and Withers 2011) and can modulating capacity from approximately 40% to over 100% of 
nominal. 

Performance and Cost Effectiveness:  As reported above for two-speed air conditioners, based on 
modeling results, the 2014 ASHRAE humidity control options report (Henderson and Rudd 2014) 
reported no appreciable reductions in hours above 60% RH for variable speed air conditioning unless 
coupled with reduced airflow and/or overcooling.  These modelled results are surprising given 
substantial testing results in an FSEC lab. Extensive monitoring of a three-ton variable capacity 
system maintained daily average indoor RH typically between 53%-55% over a variety of weather 
conditions (Cummings and Withers 2011). The three-ton variable capacity system was about 90% 
oversized when used with an indoor duct system. There was no mechanical ventilation in the lab 
home at the time of the study, but the home was fairly leaky with an ACH50 of about 10. Additional 
experimental results using a variable capacity system in a mechanically ventilated building will be 
discussed in further detail in the Task 2 section of this report. Variable capacity systems are well-
suited for swing seasons since they can provide cooling down to 40% of the nominal rated capacity. 
These systems also come with an RH control feature which will allow operation at lower cfm/ton for 
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periods and also permit overcooling past the set point of 2 degrees. The cost of a variable capacity 
heat pump is approximately $3700 more than the cost of a SEER 13 single capacity system.   
 

Subcooling Reheat  
Overview:  Subcooling reheat is a cooling system enhancement technology that combines 
overcooling and reduced airflow with a heating coil downstream of the evaporator coil to reheat the 
air being delivered to conditioned space with heat recovered from the refrigerant line. 

Performance and Cost Effectiveness:  Modeling results reported in the 2013 Building America Expert 
Meeting publication (Rudd 2013a) showed subcooling reheat technology to eliminate all hours over 
60% RH in Miami and nearly eliminate hours above 60% RH in Orlando.  However, Rudd’s 2013 
Supplemental Dehumidification report (Rudd 2013b) notes that since this technology incorporates 
cooling air below the desired set-point, it “is not a full supplemental dehumidification option 
because it cannot continue to operate indefinitely to control indoor humidity without unacceptably 
overcooling the conditioned space.”   A cost estimate provided by (Ruud 2013b) is $1,600. 

 

Full Condensing and Subcooling Reheat  
Overview:  This technology is very similar to subcooling reheat, but as described in Rudd 2013b, by 
using modulating hot gas reheat to bring cooled and dehumidified air back to room-neutral 
temperature, can operate with greater efficiency and also run indefinitely without overcooling. 

Performance and Cost Effectiveness:  Rudd’s 2013 Supplemental Dehumidification publication 
(Rudd 2013b) states that this strategy “is the most energy efficient option for effectively controlling 
indoor relative humidity near 50% RH” and that while it doesn’t perform quite at the level of the 
stand-alone or ducted dehumidifiers, only a “relatively small number of hours … remain slightly 
above the desired RH set point….”  The cost estimate for this technology is about $1,750 (Ruud 
2013b). 

Dedicated Outdoor Air System 
Overview:  Dedicated outdoor air system (DOAS) technology preconditions ventilation air before it is 
introduced into a building, providing filtration, cooling and moisture removal.  This is an effective 
practice in commercial buildings. It is a more difficult application for residential OA which will 
typically only be about 60 cfm. There are some systems currently available through Unico for 
residential applications that are well-suited to handle 100% OA in hot humid climates. The system 
includes a variable speed motor and intelligent controller programmed to handle cooling humidity 
control and ventilation needs. This system essentially uses a deep coil designed for low flow rates to 
maintain a colder coil and lower SHR when needed during higher indoor RH periods. Higher duct 
velocity design has also been shown to increase ventilation mixing effectiveness throughout the 
home. Cost for the entire installed ducted system is about $7000. 

Currently FSEC has been experimenting with using a variable capacity minisplit as part of an OA 
system. A residential mini-split dedicated outdoor air (MSDOA) system can be used to pre-condition 
OA before being distributed in a home. For best RH control the OA should be ducted to the return 
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intake at low velocity to encourage effective capture into the return. Cost of an installed MSDOAS is 
estimated to be about $3200.   

Performance and Cost Effectiveness:  Currently variable capacity mini-splits with SEER ratings 
around 19-20 are available. There is no known published data on using this method, but it is 
currently under examination and results will be discussed in further detail in Task 2. The cost of an 
installed MSDOA is estimated to be about $3200. In cases where a SEER 19 mini-split is used in a 
home with a SEER14 central system, the mini-split will operate more efficiently than central cooling 
system so there is an efficiency advantage to trying to use it as a primary stage of cooling. The 
MSDOA thermostat can be set one to two degrees below the set-point of the central cooling system. 
If the MSDOA can’t keep up with the load, the central system can turn on and run as needed.   

 

Discussion 
A two-part latent load management strategy is appropriate.  While one specific air conditioning latent 
enhancement recommendation cannot be made for all Florida homes and homeowners, using some 
levels of overcooling and fan airflow adjustment together with dual or variable capacity systems (if so 
equipped) will typically be helpful in the absence of having any other additional measure of RH control.   

A 2007 BSC research report (Rudd and Henderson 2007) summarized equipment control strategies 

Several equipment manufacturers offer equipment with enhanced moisture removal at 
part load. These systems typically vary blower speed, operate at lower compressor 
stages, or lower cooling setpoints to provide more dehumidification. The increasing 
use of variable-speed fan motors, lower-cost humidity sensors, and embedded 
electronic controls in higher-end cooling systems have made these control approaches 
practical. Typical control algorithms lower airflow at low-load conditions to reduce coil 
temperatures and provide more moisture removal (Krakow et al. 1995; Andrade and 
Bullard 2002).  

However, as noted above in the discussion of several of the latent control options, since enhanced 
control strategies cannot be used during mild weather when no air conditioning is called for (or would 
require overcooling the space under these conditions) they are not adequate latent cooling approaches 
by themselves for high-performance homes and a second, separate dehumidification strategy will 
typically be needed.   

The conclusion section of the 2002 monitored BSC dehumidification study (Rudd et. al. 2002) 
summarizes this well: 

All of the systems with dehumidification of recirculated air, separate from the 
cooling system, exhibited much better humidity control than those with 
dehumidification of ventilation air only (ERV system) and those with 
dehumidification only as part of the cooling system. Therefore, the problem of 
high humidity does not lie with mechanical ventilation, and the solution does not 
lie with the cooling system. The problem of elevated humidity in energy-efficient 
homes in hot-humid climates is a result of interior moisture generation and 
lowered sensible heat gain. High-performance windows and insulation, and 
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locating air distribution ducts inside conditioned space reduces sensible heat  gain 
to the extent that the fraction of latent cooling load to total load is often outside 
the capacity range of even the best currently available mass-market cooling 
equipment. The solution, for now, is to employ dehumidification separate from 
cooling in hot-humid locations.  

 

Rudd concludes the abstract of the article by stating: 

Some options are less expensive but may not control indoor humidity as well as more 
expensive and comprehensive options. The best performing option is one that avoids 
overcooling (cooling below the requested set point) and avoids adding unnecessary 
heat to the space by using waste heat from the cooling system to reheat the cooled 
and dehumidified air to room-neutral temperature.  

 

The 2013 Supplemental Dehumidification publication (Rudd 2013b) provides a listing of the most 
effective options that have “relatively low operating cost and essentially eliminating indoor humidity 
above 60% RH:” 

• Full condensing and subcooling reheat integrated with the central cooling system 
• Ducted dehumidifier 
• Stand-alone dehumidifier with central system mixing 
• DX condenser-regenerated desiccant dehumidifier. 

While he doesn’t break out operating energy use by technology in this summary, Rudd also estimates 
that supplemental dehumidification will use about 170 kWh/yr for a HERS Index 50 house with ducts in 
conditioned space and a 60% RH set point. 

The 2013 Building America Expert Meeting report (Rudd 2013a) also provides a general cost for 
supplemental dehumidification for high performance homes: 

The supplemental dehumidification energy consumed to keep indoor RH below 60%, 
taken as the difference in total HVAC cost for the same building with and without 
supplemental dehumidification, is relatively small. It is in the range of 250 kWh/yr or 
less ($30/yr or less), but necessary to enable deep cuts in sensible heat gain without 
incurring long periods of elevated indoor RH.   

Several supplemental dehumidification options have been discussed thus far with much of the most 
recent work cited by Rudd2013a and Rudd2013b. Following here is Table 1 which summarizes these 
options with estimates on first cost along with some positive and negative attributes of each. These are 
presented here as a general summary. Costs shown can vary widely, but an attempt is made to provide 
some idea on general expectations. 
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Table 1.  Supplemental Dehumidification Options (cost sources: Rudd 2013b and FSEC research). 

Supplemental 
Dehumidification 

System 

First-Cost 
Estimate 

Including Labor 

Pros Cons 

Overcooling $0 
Low first cost.  
User control. 

Results in cold clammy comfort. 
No help in swing season. Energy 

inefficient 

Lowering fan speed $0-$75 
Improved dehumidification. 

Owner may be able to do 
this. 

Some loss in cooling efficiency. 
No help in swing season. 

Heat pipes $3,000 
Long life, low maintenance May not have room to install. No 

help in swing season. 

Enthalpy recovery 
ventilation $700-$1,400 

Can reduce load from 
ventilation. Balanced house 

pressure possible. 

Extra energy to run the two fans 
needed. No help in swing season. 

Dual capacity air 
conditioner  $1,800* 

Low speed can result in 
lower energy use while 

saving energy 

Higher first cost. Better than single 
cap., but still some hours swing 

season it will not operate. 

Variable capacity air 
conditioner ventilation $3,700* 

Excellent efficiency. Longer 
run times. Good RH control. 

Good ventilation mixing.  

High first cost. New on residential 
market, so more to learn. 

Dedicated outdoor air 
system $7,000 

Good RH control. 
Excellent ventilation 

effectiveness potential. 

High first cost. 

Mini-split Dedicated 
outdoor air system $3,200 

Good RH control. High-
efficiency. 

Hard to size solely for low flows. 
Some localized overcooling may 

occur at times. Good mixing 
depends upon central fan cycling. 

Stand-alone 
Dehumidifier 
with Remote 
Dehumidistat 

$500-$2,000** 

Works with or without AC. 
Good RH control. 

Energy -inefficient. Adds heat, 
some RH dead bands can be 

excessive. Noise may be issue. 

Integrated Ducted 
Dehumidifier $1,000-2,000** 

Works with or without AC. 
Good RH control. Air is 
distributed better than 

stand-alone. 
Noise issue less likely than 

stand-alone 

Energy -inefficient. Adds heat, 
some RH dead bands have been 

found excessive 

Sub-cooling Reheat $1,600 
Good RH Control. 

More efficient than 
dehumidifiers. 

Overcools and then heats, using 
energy for both. High first cost. 

Full-condensing Reheat $1,750 
Good RH Control. 

More efficient than 
dehumidifiers. 

Overcools and then heats, using 
energy for both. High first cost. 

Desiccant Dehumidifier $2,000 
Good RH control. Has 

potential to be recharged 
by solar or gas 

Higher first cost,  

 * cost increase compared to single capacity S13 system. 
** Wide variability in cost depending upon capacity, availability of space, and if condensate 
pump is needed. 
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Task 2: Experimental Work 
 

Task 2 of this project is to complete a minimum of four different experiments in a lab building to assess 
resulting indoor RH and energy consumption. The experiments are to use various latent load 
management approaches (including a dehumidifier) at various levels of mechanical ventilation. It should 
be noted that the original proposed scope of this work is larger than evaluating four different 
experiments, however there was only time to evaluate four within the timeframe of the current work 
contract. A second phase of this work is proposed to continue evaluation of other experiments.  

Experimental Method 
Four experiments were conducted within the Building Science Lab building located on the Florida Solar 
Energy Center campus. It has a conditioned floor area of 2000 ft2 with concrete masonry block walls 
having  R5 unfaced foam board insulation located on the interior side of the wall. Windows are single 
pane clear glass set in metal frame. Ceiling insulation is R19 batt. Building airtightness was tested using a 
blower door and measured a normalized air leakage rate of 4.5 ACH50. This tightness would meet the 
2012 IECC requirement of 5 ACH50 or tighter and would therefore require mechanical ventilation. Duct 
airtightness testing measured 53 CFM25 total, but since the ducts are located within the primary air 
barrier of the building, the measured CFM25out=0. A manual J8 load calculation on the building 
calculated a summer 99% design total cooling load of 35,780 btuh based on 130 cfm of mechanical 
outdoor ventilation air (our maximum ventilation rate test) and the internal sensible loads 

The building is currently configured with a central ducted variable capacity SEER21 heat pump (S21) with 
a nominal rated 3 ton cooling capacity. This system is able to vary cooling from 40% up to 118% of its 
nominal capacity. It does so by varying refrigerant flow as well as varying the system airflow. This means 
that the system is able to deliver cooling from about 1.2 tons up to about 3.5 tons. The S21 system is 
controlled by a thermostat that monitors subtle changes between the room temperature and set point, 
then determines the stage of cooling (or heating) to operate at. The system is capable of running at 
eleven different stages of cooling. Its nominal capacity operation is at about the eighth stage and stages 
10 and 11 only occur if the room temperature has exceeded the set point by two degrees for several 
minutes. The thermostat also  offers a humidity control option and fan cycle option which are well-
suited for improving humidity control and mixing of mechanical OA. 

Internal loads were established using guidance from a Building America report on internal residential 
loads (Hendron and Engebrecht 2010). Internal cooling loads were maintained consistently throughout 
all experiments by keeping the building unoccupied and providing internal sensible and latent heat 
through controlled measures. Sensible heat was added primarily through interior lighting, space heater 
and mechanical fans. The interior sensible loads were monitored using power meters during the entire 
project to ensure consistency was maintained for each experiment. The average interior sensible load 
delivered per day was at a rate of 3851btu/h. An interior latent load of about 9.8 pounds of water each 
day was evaporated into the building (an average latent heat rate of about 397btu/h) and distributed 
within the building by a floor circulation fan. The latent load was also monitored throughout the project 
by means of a tipping bucket that provides a pulse output proportional to the volume of water passing 
through the evaporation assembly. 
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Electric energy was measured using Continental Controls Wattnode power meters and were calibrated 
using comparison to a manufacturer calibrated Dranetz Power Visa power meter analyzer, using model 
TR-2510B CT's. Measurements were within 2% agreement of each other. Latent heat added and 
removed (as liquid phase water evaporated or water drained from cooling coils) from the building was 
measured using tipping buckets carefully calibrated at the anticipated rates of flow for each application. 
The basis of determining tipping bucket calibration was by supplying a drip rate of water to each bucket 
used where the number of tips were measured for a given measured mass of water. Indoor and outdoor 
conditions were measured using Type T thermocouples and Vaisala temperature and relative humidity 
sensors. These were calibrated against a manufacture calibrated Vaisala HM34 temperature and 
humidity sensor. 

All data from sensors were collected using a Campbell Scientific, Inc. CR10 datalogger where data was 
gathered several times each day from a FSECs central computer terminal. Data from sensors were 
sampled at 10 second intervals, then processed and stored at 15 minute intervals. Upon collection by 
the central computing terminal, the raw data from the datalogger was screened for out of bound errors 
and then processed for terminal collection in the main project database account. Errors or missing scans 
are marked and noted within the main database. No missing scans occurred during the data used in 
analysis. 

Mechanical Ventilation 
As covered in the fourth paragraph of the Background section of this report, Florida code references 
both the IMC 2012 and IRC 2012 ventilation requirements. They have the same 60 cfm requirement for 
3 bedroom homes between 1,501ft2-3000 ft2, however they may differ depending upon the house area 
and number of bedrooms. While Florida code does not specifically reference ASHRAE Standard 62.2, a 
very tight home could potentially have twice the mechanical ventilation rate as Florida code 
requirements.  
 
Mechanical ventilation was provided through an in-line fan in a supply terminal application where air is 
pulled from outdoors through a south side wall access port and ducted into the building to a desired 
terminal location. To ensure consistent air delivery occurred, a Continental Fan iris damper with 
differential pressure measurement across the iris orifice was used to measure the actual delivered air 
flow rate into the building throughout the entire project. The iris damper was calibrated using a TSI 
model 8390 Windtunnel.  

Two ventilation rates were chosen to be applied to two different RH control strategies. The first OA rate 
chosen was 60 cfm. This rate is what the IMC 2012requires for a three bedroom home (15cfm/bedroom 
plus 15 cfm) and is also what IRC 2012 requires for 3 bedroom homes between 1,501ft2-3000 ft2.  

The second rate chosen was 130 cfm. This rate is on the extreme range of what would be expected in 
residential construction, but is plausible. This is much higher than would occur in any typical home 
based strictly upon IMC 2012. Based upon IRC 2012, 130cfm would be required in a home >7,500 ft2 
with 4-5 bedrooms. This rate would also be required in ASHRAE 62.2 for an extremely tight home of 0.5 
ACH50 with 3025 ft2 and 5 bedrooms. Testing at 130 cfm also allowed the dehumidification strategies to 
be challenged more. 

Test Configuration Descriptions 

Test configuration 1: 130 cfm OA to MS; Central SEER21; Dehumidifier backup at 60%RH 
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Test 1 consisted of running a variable capacity Fujitsu minisplit heat pump at a 74°F cooling setpoint 
with 130 cfm OA ducted to a constructed return air plenum with an air flow station inside. The Fujitsu 
18RLXFW mini-split heat pump has a nominal capacity of 1.5-tons but maximum capacity of 1.92 tons 
(23,000 Btu/h). Figure 2 shows the minisplit system near the top right of figure and a view of the metal 
ducted ventilation system. The primary purpose of the ducted return plenum was to enable an accurate 
air flow measurement through a calibrated flow station inside. The plenum also effectively captures all 
the OA when the MS is on. The other sections of duct leaving the minisplit can be used to distribute OA 
to other locations as needed. This MS only allows setpoint in increments of 2°F. It was found that the 
74°F setpoint enabled adequate handling of OA without overcooling the space during the conditions the 
experimental period.  

The SEER21 central system was set at 77°F setpoint so it was able to turn on to maintain comfortable 
conditions if the MS was not providing enough cooling. Interestingly the MS unit temperature control 
tolerates a long slow rise in interior temperatures gradually increasing capacity over time without 
jumping up into a high cooling capacity. The typical pattern as shown in figures later is for the MS to 
handle most of the cooling load, then the central system activates cooling for a while during the middle 
part of the day. But the MS is not operating at its highest capacity at the time the central system comes 
on. This appears to be a normal operation of this type of variable capacity MS as observed in a previous 
proprietary project. 

 

Figure 2. Minisplit with OA duct termination at return intake plenum. 

A dehumidifier rated to remove 70 pints/day was placed within the central room with a remote 
dehumidification control set on the wall near the central system thermostat shown in Figure3. The 
dehumidistat control was set to 60% RH. As is common with many dehumidistat controls, the markings 
on the controllers can be off by 5%RH. A calibrated Vaisala HM34 was used to confirm activation at the 

18 
 



60%RH level. The dehumidifier could then cycle on if any of the dehumidification control measures 
could not maintain 60% RH indoors. Energy and condensate of the dehumidifier was monitored, 
although the measures used adequately controlled RH and therefore it never operated. 

 

Figure 3. View of thermostat and remote dehumidistat on wall at left and view of OA duct termination just above the central 
intake return. Dehumidifier is on a stand on the right side. 

 

Test configuration 2: 60 cfm OA to MS; Central SEER21; Dehumidifier backup at 60% 

• Test configuration 2 was essentially the same as described in the previous Test 1 description 
except at a lower ventilation rate of 60 cfm instead of 130 cfm was delivered to the MS. 

 

Test Configuration 3: 60 cfm to SEER21 central system; MS off; DH at 60% 

This test operated with only the SEER21 central ducted cooling system set at 77°F setpoint and the 
dehumidifier activated at the 60% control point. The OA rate of 60 cfm was ducted to the central return. 
The OA termination can be seen just above the central return intake in Figure 3. The box assembly in 
front of the central return was used to verify a visualization of the effectiveness of OA capture into the 
return. Figure 4 shows visualization of the OA capture using fog injected into the OA intake from 
outdoors. This image was taken while the central system was running at its lowest stage of cooling and 
low flow rate which makes capture more difficult. While the image shows some concentration slightly to 
the right of the box, it was quickly captured into the return at the edge. Tissue paper placed at the front 
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edge of the box also shows the airflow direction from the room into the central return. Use of tracer gas 
in the building also indicated complete capture into the return with the central system in the lowest 
stage of cooling. The capture potential is greater as the central system airflow increases. 

 

Figure 4. Fog injected into the OA intake shows Capture of OA at 60cfm into central return during the central system’s lowest 
stage of cooling and low system flow rate. Tissue paper indicates air flow direction from room into return. 
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Test Configuration 4: 130 cfm to S21 central system; MS off; DH at 60% 

• Test configuration 4 was the same as described in the previous Test 3 description except at a 
higher ventilation rate of 130 cfm instead of 60 cfm was delivered to the central system return. 

 

Results 
The experiments were conducted May 2-June 12, 2014. The outdoor and indoor conditions are 
summarized in Table 2 for each of the four test configurations. The overall average of every day is shown 
along with the range from lowest daily average to the highest daily average in parentheses. The indoor 
temperatures shown in this report are an average of five different locations distributed around the 
building. 

Table 2. Daily average conditions during each test configuration with the total number of days for each set. 

Test Configuration Out temp. 
(°F) 

(range) 

Out dewpoint 
(°F) 

(range) 

Indoor temp. 
(°F) 

(range) 

Indoor RH 
(%) 

(range) 

# days 

1  MS, OA 130cfm 
+S21 

75.3 
(70.0-79.3) 

63.4 
(53.7-68.2) 

76.5 
(75.3-77.1) 

47.3% 
(44.4%-51.9%) 

10 

      
2 MS, OA 60cfm 

+S21 
75.2 

(70.0-79.6) 
62.5 

(52.8-71.0) 
76.6 

(75.8-77.2) 
47.3% 

(42.9%-48.7%) 
10 

      
3 S21, OA 60cfm 79.9 

(77.1-82.5) 
67.8 

(62.2-70.5) 
76.3 

(76.1-76.4) 
49.2% 

(46.2%-51.6%) 
10 

      
4 S21, OA 130cfm 78.8 

(75.4-81.7) 
66.0 

(61.4-69.3) 
76.3 

(76.1-76.4) 
50.9% 

(49.7%-52.5%) 
9 

 

While variability in outdoor conditions can be seen for all test configurations in Table 2, it is perhaps 
more evident in Figure 5. Figure 5 shows the hourly average outdoor temperature and dewpoint 
temperature throughout the testing period. The X-axis is continuous time with the test configuration 
and beginning date of monitoring. T1-M2 on the axis indicates when Test configuration 1 began on May 
2 (T2-M12 indicates when Test 2 began on May12 and so on). The most notable observations are that 
the first two test configurations occurred with cold fronts passing through. This is not unusual variability 
for this time of year. The temperatures in mid- June through mid- September typically have much less 
variability.  It is the weather that occurs in August through November that would be most useful to 
evaluate indoor RH control effectiveness. This can involve days with high outdoor dewpoints, but mild 
sensible loads when indoor RH will rise due to less air conditioner run-time. Given that Test 1 
configuration had the least amount of dewpoints near 70°F, an attempt was made to collect more data 
beginning June 11 (T1-J11 on Figure5), however the weather did not favor our effort as there was 
another dive in outdoor dewpoint during this period. 
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Figure 5. Outdoor Temperature and Dew Point (Hourly Averages) 

 

Cooling Energy and Latent Removal 
Although there were many relatively dry days, each test had at least one or two days when the average 
outdoor dewpoints were 68°F-71°F. This section highlights the daily pattern of energy use and resulting 
indoor conditions using days with the most available similarity in warm moist outdoor conditions. Table 
3 shows a summary the outdoor drybulb and dewpoint temperatures along with the indoor drybulb 
temperature, RH, and latent (condensate) removal from the building. The average for the day is shown 
along with range from lowest to highest hourly average in parentheses. The resulting indoor 
temperature and RH are also shown for the same day. The average daily indoor temperatures are very 
close to each other, but test configurations 1 and 2 using the MS show a wider band from the lowest to 
the highest temperature. While overcooling did not occur in this testing, there is potential to overcool a 
space where the MS is located depending upon the size of the room and set-points of cooling 
equipment. 
There were no days in which the indoor RH was equal to or exceeded 60% and therefore there was no 
dehumidifier operation. The latent removal shown in Table 3 represents the total from all space 
conditioning equipment. Using the MS unit clearly removes much more moisture as seen in Table 3. The 
average daily removal using the MS vs S21 alone is 23.9 pints (88.6 pints-64.7 pints= 23.9 pints) (36.9%) 
more. Using the MS results in an average difference in indoor RH of 4.3%RH (51.4%RH-47.1%RH= 
4.3%RH) which is 8.4% lower. 
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Table 3. Daily average conditions during each test configuration during similar outdoor conditions. 

Test Configuration Out temp. 
(°F) 

(range) 

Out dewpoint 
(°F) 

(range) 

Indoor 
temp. 

(°F) 
(range) 

Indoor RH 
(%) 

(range) 

Latent heat 
removed 

(Pints/day) 

1  MS, OA 130cfm 
+S21 

79.3 
(76.2-83.4) 

66.5 
(62.0-68.7) 

76.5 
(75.3-77.1) 

47.2% 
(44.7%-50.2%) 

96.8 

      
2 MS, OA 60cfm 

+S21 
79.4 

(75.6-84.7) 
68.1 

(67.1-71.1) 
76.6 

(75.8-77.2) 
47.0% 

(44.7%-51.1%) 
80.3 

      
3 S21, OA 60cfm 78.7 

(70.8-85.9) 
69.3 

(65.6-71.6) 
76.3 

(76.1-76.4) 
51.1% 

(48.5%-52.5%) 
52.7 

      
4 S21, OA 130cfm 79.6 

(69.8-90.6) 
69.3 

(68.0-71.2) 
76.3 

(76.1-76.4) 
51.7% 

(49.7%-54.0%) 
76.6 

 

Following are several daily plots (see Figures 3-12) that represent the same days shown in Table 3. Some 
Figures show the cooling energy used and latent heat (condensate) removed during each hour of the 
day. The energy is in kWh on an hourly basis and could be also be considered the average kW for each 
hour. There are also Figures that show the daily profile of indoor and outdoor conditions for each 
configuration. 

Test Configuration 1 with 130 cfm OA ducted to the MS return and using SEER 21 Central System has the 
energy use and latent heat removed for each system shown in Figure 6. Data shown occurred on May 
10, 2014. This configuration used a total of 21.6 kWh of cooling energy (MS+S21) for the day and 
removed a total of 96.8 pints (12.1 gallons) of latent load. It is also of interest to see the combined 
impact by adding the energy and condensate of both systems as shown in Figure 7. 
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Figure 6. Test 1 cooling energy consumption and condensate removal per hour for each system shown for May 10; 130 cfm OA 
to MS and S21 central system active 

 

 

Figure 7. Test 1 total combined cooling energy and condensate removal per hour shown for May 10; 130 cfm OA to MS and S21 
central system active 
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The latent removal is primarily from the mini-split. The variability in the latent removal throughout the 
day is due to the variable capacity delivered and variability in the SHR. The increase in latent removal 
starting at about 8pm is a result of the minisplit SHR dropping to about 0.65 compared to 0.76 at 6:45 
am when the latent removal was at its lowest. The daily average SHR on this day was 0.71. The daily 
average indoor and outdoor conditions are shown in Figure 8. 

 

 

Figure 8. Test 1 hourly average indoor and outdoor temperature, indoor relative humidity and outdoor dewpoint shown for May 
10; 130 cfm OA to MS and S21 central system active 

 

Daily energy and latent removal results for test Configuration 2 with 60 cfm OA to the MS return and 
SEER 21 central system has the energy use and latent heat removed for each system shown in in Figure 
9. The combined impact of both systems is shown in Figure 10. Data shown occurred on May 13, 2014. 
This configuration used a total of 20.8 kWh of cooling energy (MS+S21) for the day and removed a total 
of 80.3 pints (10.0 gallons) of latent load. The daily average indoor and outdoor conditions are shown in 
Figure 11. 
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Figure 9. Test 2 cooling energy and condensate removal per hour for each system shown for May 13; 60 cfm OA to MS and S21 
central system active  

 

 

Figure 10. Test 2 total cooling energy and condensate removal per hour shown for May 13; 60 cfm OA to MS and S21 central 
system active 

 

26 
 



 

Figure 11. Test 2 hourly average indoor and outdoor temperature, indoor RH, and outdoor dewpoint shown for May 13; 60 cfm 
OA to MS and S21 central system active 

 

Daily energy and latent removal results for test Configuration 3 with MS off (not permitted to turn on) 
and 60 cfm OA captured at the SEER 21 central system return has the energy use and latent heat 
removed the central system shown in in Figure 12. Data shown occurred on May 29, 2014. This 
configuration used a total of 18.5 kWh of cooling energy for the day and removed a total of 52.7 pints 
(6.6 gallons) of latent load. The daily average indoor and outdoor conditions are shown in Figure 13. 
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Figure 12. Test 3 cooling energy and condensate removal per hour shown for May 29; 60 cfm OA to S21 central system  

 

 

Figure 13. Test 3 hourly average indoor and outdoor temperature, indoor RH, and outdoor dewpoint for May 29; 60 cfm OA to 
S21 central system 

Daily energy and latent removal results for test Configuration 4 with MS off and 130 cfm OA captured at 
the SEER 21 central system return has the energy use and latent heat removed the central system 
shown in in Figure 14. Data shown occurred on June 8, 2014. This configuration used a total of 20.1 kWh 
of cooling energy for the day and removed a total of 76.6 pints (9.6 gallons) of latent load. The daily 
average indoor and outdoor conditions are shown in Figure 15. 
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Figure 14. Test 4 cooling energy and condensate removal per hour shown for June 8; 130 cfm OA to S21 central system 

 

 

Figure 15.Test4 hourly indoor and outdoor temperature, indoor RH, and outdoor dewpoint shown for June 8; 130 cfm OA to S21 
central system 
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Predicted Seasonal Energy 
Linear regression analysis has been performed to characterize the relative cooling energy consumption 
(kWh/day) versus delta-T (outdoor temperature minus indoor temperature) of the four different test 
configurations.  

A plot of the data and regression results are shown in Figure 16. The best-fit line equations and 
coefficient of determination (r2) are shown in the colored text boxes and are in the order from test 1 
through test 4 from highest to lowest respectively. Table 4 presents the predicted energy for a seasonal 
summer day having a dT of 5°F using the best-fit line equations. A dT of 5°F is used based upon an 
average 77°F indoor condition and daily summer outdoor average temperature of 82°F (82-77=5). Also 
shown in Table 4 are the standard error and r2.  

 

Figure 16. Daily cooling energy versus the daily average temperature difference between outdoors and indoors. 
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Table 4. Predicted seasonal energy for a typical summer day at dT=5 shown with standard error and r2  

Test configuration Predicted Daily Cooling 
Energy (kWh) Standard Error Coefficient of 

determination (r2) 
1 MS 130 cfm + S21 25.82 0.59 0.988 
2 MS 60  cfm + S21 24.58 0.54 0.977 
3 S21 60 cfm 21.78 0.72 0.934 
4 S21 130 cfm 22.28 1.15 0.898 
 
Based upon the four test experiments the following summary can be made: 
Impact of changing ventilation rates 

• For the test configurations 1 and 2 which had ducted OA to the mini-split and used the central 
SEER21 cooling system, decreasing ventilation rate from 130 cfm to 60 cfm resulted in 1.24 
kWh/day (4.8%) lower space conditioning energy use. Conversely it could also be stated that 
increasing the OA rate from 60 cfm to 130 cfm increased energy by 5.1% 

• For the test configurations 3 and 4 which had ducted OA to the return of the central SEER21 
cooling system, decreasing ventilation rate from 130 cfm to 60 cfm resulted in 0.50 kWh/day 
(2.2%) lower space conditioning energy use. Conversely it could also be stated that increasing 
the rate from 60 cfm to 130 cfm increased energy by 2.3%. 

•  There is an indicated difference in impact of ventilation rates on the MS+S21 test about 2.5 
times that of just using the S21 central system (1.24 kWh/day / 0.5 kWh/day=2.5), however 
given the small percent differences, average standard error of 0.75, and the lack of test 1 and 2 
data at dT=5, the difference may not be significant. 

 
 
Difference between latent control methods 

• Both methods worked well in controlling indoor RH below 60% RH. 
• Using the minisplit with the SEER 21 central ducted system provided lower indoor RH, but used 

more energy. 
• At the 130 cfm level of OA, test 1 (minisplit with the SEER 21 central system) used 3.55 kWh/day 

(15.9%) more energy than test 4 where the OA was captured at the return of the central unit 
and MS was off. 

• At the 60 cfm level of OA, test 2 (MS + S21) used 2.80 kWh/day (12.8%) more energy than just 
test 3 (S21 and MS off). 

• It is believed there is more energy in using the MS primarily due to shift of most of building 
cooling load to MS operating at a lower avg. efficiency, but at the benefit of better latent 
removal. From Table 3 it was shown that using the MS had an average daily removal of 23.9 
pints (36.9%) more than using OA ducted to the SEER 21 unit. Using the MS results in an average 
difference in indoor RH 4.3%RH (51.4%RH-47.1%RH= 4.3%RH) which is 8.4% lower. 
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Conclusion 
 
A literature review of indoor RH control methods in homes was completed. Resources most relevant to 
addressing Florida’s climate were of primary focus. From this review several  dehumidification options 
have been identified, but there are several factors that have to be considered in selecting one, therefore 
no single measure can simply standout. Factors to be considered are: 

• Health needs of occupants 
• House design  

o Variability of solar exposure throughout the day and year 
o Availability of physical space to locate supplemental dehumidification equipment 
o Type of construction and interior finishes- Homes with minimal internal moisture 

capacitance will have faster rates of change in interior RH (finished concrete or tile floors 
and minimal soft cloth-type furniture and furnishings).  

• Occupant driven operations 
o Indoor temperature set point preferences (low cooling temperature can result in high wall 

surface humidity under certain conditions even if occupant is comfortable) 
o Excessive runtime of bath or large kitchen exhaust 
o Large internal latent load generation 

• Personal comfort / ascetic preferences 
o No supplemental dehumidification may be desired if house interior is kept relatively warm 

and there is a preference for elevated humidity. 
o Preference for equipment to be unseen and unheard may make some options less desirable. 

• First cost and operational cost 

Overcooling and reducing fan speed are the simplest and lowest first cost RH control strategies, but are 
not adequate to maintain indoor RH below 60% all the time. This may not be an issue for some 
occupants or buildings materials more tolerant of elevated indoor RH part time. Other technologies such 
as sub-cool reheat, and full-condensing reheat, have been proven to work in commercial applications, 
but only work as long as the central cooling system operates and therefore some hours >60%RH can be 
expected. DX condenser-regenerated desiccant dehumidifier may also work very well at minimizing, if 
not eliminating, all hours of RH>60%. While the last three technologies mentioned are expected to 
control RH reasonably well, there was inadequate published data found on measured operational 
performance in residential applications in hot humid climates.  

These technologies should be tested and evaluated to collect data in residential applications occurring 
through Florida’s cooling seasonal conditions to obtain more confidence in the operational costs. 

It appears that there is much promise for SEER21 variable capacity central systems to offer an energy-
efficient method of combined space cooling and supplemental dehumidification in mechanically 
ventilated buildings. At a high OA flow rate of 130 cfm captured at the return of the central unit, the 
highest indoor RH reading on a warm moist day was 54.0%. This is not to say that there would never be 
any hours with indoor RH>60% throughout the year, but they are expected to be few given that these 
systems can operate as low as 40% of nominal capacity. This method used about 14% less seasonal daily 
energy than the tested method where OA is captured at the minisplit return and the SEER21 central 
system provides cooling as needed.  
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Work in this first phase had only enough time to evaluate two different methods at two different 
ventilation rates. The weather during the experiments offered very limited days with elevated 
dewpoints to work with. A second phase already proposed is important to evaluate more latent load 
approaches and collect more data for experiments during more variable weather. As discussed earlier, 
good RH control becomes more challenging during the cooling season on days when the outdoor 
dewpoint is greater than 65° F. Typical summer outdoor dewpoints run between 72°F-76°F, but outdoor 
latent load is just beginning to increase May through early June with lower dewpoints in the range 60°F-
70°F. It is imperative that the second phase be completed to provide more expansive and meaningful 
results through November. This would provide much needed testing under the challenging outdoor 
conditions of lower outdoor sensible, but high latent loads such as a cooler day with outdoor dewpoint 
of 72°F. 

Based upon phase 1 results and input from the Florida Energy Technical Advisory Committee meeting 
held on June26, the next recommended test configurations for Phase 2 would be to evaluate the 
effectiveness of:  
1. 60 cfm OA ducted to MS with a low efficiency SEER 13 central ducted fixed capacity system. Phase 1 

experiments found operating the MS with the SEER21 central system used more energy but, given 
the much lower efficiency of the SEER13, this proposed Phase 2 Test 1 may result in lower operating 
cost than running the S13 unit alone. Furthermore, based on results so far, the MS operation will 
result in lower indoor RH which could eliminate the need for an inefficient dehumidifier.  

2. MS off and 60 cfm OA to return of SEER 13 central ducted fixed capacity system 
3. SEER 13 central ducted fixed capacity system with 60 cfm OA ducted to central zone (not captured 

by return). This will be an important base efficiency test to compare other results.  
4. Collect swing season data for at least Phase 1 Test 3 at the 60 cfm OA rate. This test uses a vent rate 

close to average size homes and was the most efficient of Phase 1 testing. 
5. SEER 13 central ducted fixed capacity with continuous exhaust ventilation. The exhaust ventilation 

rate would be at a rate greater than 60 cfm designed to evaluate the combined impact of 
mechanical OA ventilation along with operation of other exhaust systems such as clothes dryers and 
high flowrate kitchen exhaust systems. 

The actual number of test configurations that could be effectively evaluated in Phase 2 depend upon 
being able to begin testing in July 2014 and run through November 2014. Effective evaluations are also 
dependent upon adequate swing-season weather periods for each test configuration.  Should limitations 
of time or available weather exist, then we recommend that priority be given to three tests. The three 
tests to be given priority are proposed above as Phase 2 Test 1, Test 2, and Test 5. 
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