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ABSTRACT	

Electric	Vehicles	(EVs)	–	including	both	plug-in	hybrid	electric	vehicles	(PHEVs)	and	
battery	electric	vehicles	(BEVs)	–	could	help	increase	energy	security	and	reduce	greenhouse	
gas	emissions,	by	using	electricity	produced	from	clean,	domestic	sources	instead	of	imported	
oil.	This	benefit	could	be	enhanced	if	EVs	are	adopted	in	high-renewable	power	systems	and	
are	charged	at	the	times	when	renewable	power	is	most	abundant,	producing	a	win-win	
arrangement	in	which	EVs	are	charged	with	lower-cost	power,	and	in	turn	enable	greater	
adoption	of	renewable	power	in	the	grid.	

With	its	unique	geography	and	current	fossil	fuel	based	energy	infrastructure	combined	
with	its	aggressive	renewable	energy	goals,	Hawaii	forms	an	ideal	site	for	large	scale	adoption	
of	EVs	in	the	future.	The	research	study	presented	here	develops	an	in-depth,	Hawaii-specific	
EV	model	which	is	then	integrated	with	the	Oahu	power	system	to	study	the	effects	of	large	
scale	EV	integration	into	the	grid,	and	also	intends	to	provide	a	better	understanding	as	to	how	
different	optimally-timed	EV	charging	strategies	can	benefit	such	a	unique	power	system.	

The	EV	model	developed	in	this	study	uses	actual	driving	pattern	data	collected	from	the	
2009	National	Household	Travel	Survey	(NHTS)	to	develop	nationally	representative	profiles	of	
vehicle	usage	patterns.	It	then	constructs	a	fleet	of	appropriate	size	for	Hawaii,	which	has	the	
same	vehicle	usage	pattern.	This	provides	a	reasonable	model	of	how	EVs	might	be	used	in	
Hawaii,	including	realistic	charging	profiles	for	individual	vehicles.	Using	the	driving	pattern	
distributions,	potential	EV	charging	windows/timeslots	were	calculated	by	determining	the	
maximum	possible	time	a	vehicle	is	parked	in	a	potential	charging	location	(i.e.	home	and	
workplace).	These	potential	charging	timeslots	provide	the	EV	owner	the	most	comprehensive	
and	realistic	charging	options	available,	as	each	option	is	unique	to	that	particular	vehicle	and	is	
derived	from	its	driving	pattern	behavior.	

Rather	than	assuming	all	vehicles	drive	the	same	distance	as	each	other,	each	vehicle	is	
modeled	individually,	which	creates	a	realistic	distribution	of	vehicle	charging	requirements.	

Half-hourly	EV	charging	electricity	demand	profiles	were	calculated	for	each	individual	
modeled	vehicle	by	depending	on	different	shares	of	charging	locations	(workplace/home	
charging)	and	different	rates	of	charging	(1.4kW/3.3kW/6.6kW).	Two	different	optimized	
charging	models	of	the	power	system	were	implemented.	One	model	assumed	EV	owners	paid	
dynamic	electricity	prices	equal	to	the	historical	hourly	marginal	cost	for	the	Oahu	power	
system	in	2014,	and	that	EV	charging	did	not	change	these	prices.	The	other	model	used	a	
supply	curve	for	electricity	based	on	the	properties	of	the	Oahu	generation	system	(including	
existing	wind	and	solar	equipment),	and	optimized	EV	charging	throughout	the	day	based	on	
this	supply	curve.	Finally,	using	each	of	these	models	the	load	profiles,	and	costs	of	the	
business-as-usual	and	optimized	charging	approaches	were	compared.	This	work	found	that	
that	smart	recharging	strategies	were	successfully	able	to	mitigate	the	amount	of	power	drawn	
during	the	peak	periods	of	the	day,	and	also	provide	savings	to	the	EV	owners	by	reducing	the	
EV	charging	costs	by	8-35%	compared	to	the	business-as-usual	(BAU)	charging	scenario.	
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This	research	study	could	help	researchers	and	policymakers	to	develop	an	optimal	plan	
for	power	system	expansion	and	operation,	considering	large	scale	adoption	of	EVs,	and	show	
how	to	develop	better	time-of-use	electricity	pricing	schemes	to	incentivize	EV	owners	in	order	
to	obtain	a	smarter	and	more	efficient	grid.	

Note:	The	contents	of	this	report	were	previously	included	in	Das,	Paritosh,	Savings	and	
Peak	Reduction	Due	to	Optimally-Timed	Charging	of	Electric	Vehicles	on	the	Oahu	Power	
System,	M.S.	Thesis.	University	of	Hawaii,	Manoa,	Fall	2015.	
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CHAPTER	1. INTRODUCTION	

 
Advancing	clean-energy,	reducing	dependence	on	foreign	oil	and	reducing	greenhouse	

gas	(GHG)	emissions	(carbon	emissions)	have	widely	been	recognized	as	some	of	the	key	
components	integrated	in	the	current	U.S.	energy	policy	[1].	Rapid	increase	in	oil	demand	in	
emerging	economies	and	increasing	global	oil	price	volatility	have	further	motivated	
policymakers	to	move	towards	energy	independence	which	has	been	critical	for	achieving	
energy	security.		

Increasing	environmental	concerns	about	the	adverse	effects	of	greenhouse	gas	(GHG)	
emissions	driving	climate	change	have	caused	U.S.	and	various	other	countries	to	propose	and	
launch	aggressive	and	comprehensive	plans	to	address	this	serious	global	concern.	In	
accordance	with	the	Intended	Nationally	Determined	Contribution	(INDC)	submitted	to	the	
United	Nations	Framework	Convention	on	Climate	Change	(UNFCCC),	the	United	States	has	
proposed	greenhouse	gas	(GHG)	reduction	targets	in	the	range	of	17	percent	by	2020	and	26-28	
percent	by	2025,	relative	to	its	2005	emission	levels,	and	to	make	best	efforts	to	reduce	by	28	
percent	[2]–[5].		

According	to	the	Inventory	of	U.S.	Greenhouse	Gas	Emissions	and	Sinks	1990-2013	[6],	
the	transportation	sector	is	the	second	largest	contributor	to	U.S.	greenhouse	gas	(GHG)	
emissions,	after	the	electricity	generation	sector.	As	shown	in	Figure	1,	the	transportation	
sector	accounts	for	almost	27	percent	of	the	total	GHG	emissions	in	2013	and	has	increased	
more	in	absolute	terms	than	any	other	sector	between	1990	and	2013.	When	analyzed	in	
detail,	within	the	transportation	end-use	sector,	passenger	cars	are	the	largest	contributor	to	
the	total	U.S.	GHG	emissions	with	42	percent	as	shown	in	Figure	2.	In	order	to	address	this	
problem,	electrification	of	the	transportation	system	has	been	considered	by	various	studies	
[7]–[10]	as	one	of	the	most	feasible	and	promising	solutions.	

As	illustrated	by	one	of	the	outcomes	in	the	study	by	Fripp	(2012)	[11],	electric	vehicles	
can	help	in	achieving	radical	emission	reductions	by	using	demand-side	flexibility,	in	which	
customers	shift	their	electricity	demands	to	those	time	periods	of	the	day,	where	the	surplus	
power	produced	by	renewable	energy	resources	could	be	best	utilized.	Thus	well-timed	
charging	of	electric	vehicles,	by	providing	reschedulable	loads,	also	helps	the	utility	to	integrate	
more	renewable	power	into	the	transportation	sector.	
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Figure	1.	U.S.	GHG	Emissions	by	Economic	Sector	in	2013	

	
Figure	2.	U.S.	GHG	Emissions	by	Transportation	Sector	in	2013	

1.1				Role	of	Transportation	in	GHG	Emissions	Reduction	
In	order	to	understand	the	importance	of	transportation	sector	decarbonization,	the	

International	Energy	Agency	in	its	annual	publication	“Energy	Technology	Perspectives	2015”	
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[12],	analyzes	and	presents	various	scenarios	and	strategies	to	guide	policy	makers	in	order	to	
achieve	the	objective	of	limiting	the	average	global	temperature	rise	to	2°	C.	The	2°	C	has	been	
identified	as	the	necessary	threshold	required	to	avoid	the	worse	effects	of	climate	change	in	
the	Fourth	Assessment	Report	of	the	Inter-governmental	Panel	on	Climate	Change	which	was	
agreed	by	various	international	governments	including	the	U.S.	in	the	Copenhagen	Accord	[13]	
and	the	Cancun	Agreements	[14],	[15]	organized	by	the	United	Nations	Framework	Convention	
on	Climate	Change	(UNFCCC).		

Based	on	the	ETP	2015	modeling	results,	in	order	to	achieve	the	carbon	emissions	
goals/targets	for	limiting	the	average	global	temperature	increase	to	2°	C	(“2DS	Scenario”)	from	
the	baseline	6°	C	Scenario	(“6DS	Scenario”)	which	is	an	extension	of	the	current	trends,	the	
potential	share	of	the	transportation	sector	of	the	overall	U.S.	CO2	emissions	needs	to	be	29	
percent	by	2050,	as	shown	in	Figure	3.	Whereas	in	terms	of	technology	as	shown	in	Figure	4,	
renewables	needs	to	potentially	contribute	30	percent	towards	2°	C	scenario	emission	
reductions.	In	the	absence	of	efforts	to	stabilize	atmospheric	concentration	of	GHGs,	average	
global	temperature	rise	above	pre-industrial	levels	is	projected	to	reach	almost	5.5°C	in	the	long	
term	(i.e.	after	2100)	(Refer	to	[12],	[16]	for	more	details	about	scenarios	and	assumptions).		
	

	
Figure	3.	U.S.	Sector	Contributions	towards	Emissions	Reductions	
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Figure	4.	U.S.	Technology	Contributions	towards	Emissions	Reductions	

1.2				Hawaii	Energy	Scenario	
With	almost	84%	of	its	energy	demand	in	2013,	being	fulfilled	by	imported	fossil	based	

fuels,	Hawaii	still	continues	to	be	the	most	petroleum	dependent	state	in	the	U.S.	Due	to	this	
high	dependence	on	imported	oil	for	power	production,	Hawaii	continues	to	have	the	highest	
electricity	prices	in	the	nation	[17]	i.e.	3	times	higher	than	the	U.S.	national	average	electricity	
price	as	shown	in	Figure	5.  
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Figure	5.	Annual	Average	Electricity	Price	in	Dollar	per	kWh	

Transportation	sector	continues	to	be	the	major	consumer	of	the	state’s	oil	
consumption,	accounting	for	almost	61	percent	(includes	ground	transportation,	commercial	
aviation	and	marine	transport)	of	the	total	petroleum	use	for	the	year	2013,	out	of	which	
ground	transportation	contributes	around	28	percent.		
	

	
Figure	6.	Hawaii	Electricity	Production	by	Source,	2013	
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Figure	7.	Hawaii	Petroleum	Use	by	Sector	in	2013	

1.3				Hawaii	Clean	Energy	Goals	and	Targets	
With	the	motivation	to	reduce	dependence	on	fossil	based	sources,	and	the	harmful	

effects	of	greenhouse	gas	emissions	on	the	environment,	states	across	the	U.S.	have	started	
creating	and	implementing	climate	and	clean	energy	policies	and	programs.	Policies	and	
measures	such	as	renewable	portfolio	standards	(RPS)	and	energy	efficiency	portfolio	standards	
(EEPS)	specify	for	utilities	or	third-party	program	administrators,	multi-year	specific	mandatory	
or	voluntary	energy	targets,	in	order	to	achieve	that	particular	state’s	environmental,	
economic,	and	energy	goals.	These	energy	goals/targets	vary	from	state	to	state	and	are	
dependent	on	each	state’s	specific	energy	demands	and	the	diversity	of	its	energy	supply.		

In	order	to	mitigate	Hawaii’s	dependence	on	fossil	based	energy	sources,	the	State	of	
Hawaii	and	the	U.S.	Department	of	Energy	established	the	Hawaii	Clean	Energy	Initiative	(HCEI)	
[18]	in	2008.	This	Memorandum	of	Understanding	(MOU)	established	aggressive	goals	to	
achieve	70%	clean	energy	by	the	year	2030,	with	30	percent	from	efficiency	measures,	and	40	
percent	coming	from	locally	generated	renewable	sources.	In	June	2015,	with	the	signing	of	
House	Bill	623	[19],	Hawaii	became	the	first	U.S.	state	to	enact	a	law	that	sets	a	goal	of	
generating	100	percent	of	its	electricity	from	renewable	energy	by	2045.	This	new	RPS	goal	is	
currently	the	most	aggressive	clean	energy	goal	in	the	country.	The	interim	RPS	goals	as	shown	
in	Figure	8	are	also	very	challenging	and	will	require	significant	efforts	from	both	the	
policymakers	and	the	utility.	
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Figure	8.	Hawaii	Renewable	Energy	Portfolio	Standards	(RPS)	Levels	

The	state	has	already	achieved	its	mandated	15	percent	RPS	target	for	the	year	2015	in	
the	year	2013.	For	the	year	2014,	21.1	percent	of	the	state’s	total	electricity	sales	were	
contributed	by	renewable	energy	resources.	The	historical	progression	of	the	RPS	levels	for	
Hawaii	from	2008	to	2014,	are	shown	in	Figure	9.	
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Figure	9.	Hawaii	Renewable	Energy	Production	Status	2008-2014	[20]	

Similarly	Hawaii’s	EEPS	program	has	set	a	goal	of	reducing	electricity	use	by	4,300	
gigawatt-hours	(GWh)	by	2030,	which	is	roughly	equivalent	to	30	percent	of	electric	utility	sales	
in	2030	[21].	For	the	year	2014,	the	EEPS	level	for	the	state	of	Hawaii	was	16.8	percent.	

 

 

Figure	10.	Hawaii	Renewable	Energy	Efficiency	Portfolio	Standards	(EEPS)	Status	2008-2014	[22]	
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1.4				Global	EV	Scenario 
EV	sales	globally	has	been	on	the	rise	and	has	increased	by	50	percent	from	2013	to	

2014,	whereas	PHEV	and	BEV	sales	grew	by	57	percent	and	43	percent	respectively	[16].	
According	to	EVI’s	2015	update	of	its	Global	EV	Outlook	2015	[23],	U.S.	with	an	EV	and	EVSE	
(Electric	Vehicle	Supply	Equipment)	stock	of	276,104	and	21,814	respectively	joins	countries	
like	Netherlands,	Norway,	and	Sweden	by	being	the	only	countries	having	EV	sales	in	the	year	
2014	exceed	market	shares	of	1	percent.	Similarly	2014	also	saw	tremendous	growth	in	EV	
charging	infrastructure,	the	number	of	Level	1	and	Level	2	chargers	increased	from	46,000	in	
2012	to	around	940,000	in	2014	and	the	number	of	fast	chargers	(Level	3,	CHAdeMo,	and	
SuperCharger)	increased	from	1,900	in	2012	to	15,000	in	2014	[16].	According	to	[24],	among	
all	countries,	U.S.	registered	the	highest	number	of	PEVs	(14,832	vehicles)	in	the	first	quarter	of	
2015.		

	
Figure	11.	Global	EV	and	EVSE	Stock	[23]	

(Source:	Based	on	IEA	data	from	the	Global	EV	Outlook	2015	©	OECD/IEA	2015,	IEA	Publishing;	
modified	by	Paritosh	Das.	License:	http://www.iea.org/t&c/termsandconditions/	)	

Hawaii	has	also	shown	a	lot	of	promise	in	terms	of	EV	growth.	For	the	year	2014,	Hawaii	
ranked	second	behind	California	among	all	the	states	in	the	number	of	plug-in	electric	light	
vehicle	registrations	per	thousand	people.	Registration	of	passenger	electric	vehicles	in	Hawaii	
grew	by	46%	from	January	2014	to	January	2015.	There	has	also	been	good	development	in	EV	
charging	infrastructure	in	Hawaii;	at	the	end	of	the	year	2014,	Hawaii	had	192	electric	charging	
stations	and	431	electric	charging	units	[25]	(Data	does	not	include	residential	(“wall	outlets”)	
or	private	electric	charging	infrastructure	(EVSE);	one	charging	station	can	have	multiple	
number	of	charging	units/outlets).	
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				Figure	13.	Global	EV	Sales	[23]	

 
(Source:	Based	on	IEA	data	from	the	Global	EV	Outlook	2015	©	OECD/IEA	2015,	IEA	Publishing;	
modified	by	Paritosh	Das.	License:	http://www.iea.org/t&c/termsandconditions/	)	
 

 

Figure	14.	Registered	Electric,	Hybrid	and	total	passenger	vehicles	in	Hawaii	

Figure	12.	Percentage	EV	Market	Share	in	
2014	[23]	
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1.5				Research	Objectives		
The	main	purpose	of	this	research	is	to	examine	the	impacts	of	electric	vehicles	on	the	

Hawaii	electric	power	system	by	identifying	and	evaluating	different	EV	charging	scenarios	
which	would	provide	a	more	accurate	and	realistic	representation	of	potential	consumer	
behavior.	With	the	increasing	penetration	of	renewable	energy	resources	such	as	wind	and	
solar	into	the	Oahu	Power	system	for	the	ultimate	goal	of	achieving	100	percent	of	its	
electricity	from	renewable	energy	by	2045,	there	is	a	need	to	understand	how	electrification	of	
the	transport	sector	(primarily	passenger)	would	affect	the	electrical	grid.		

This	research	work	develops	a	simple	power	system	model	and	configures	it	with	Hawaii	
specific	data	to	evaluate	the	benefits	of	optimally-timed	EV	charging,	and	the	impacts	of	these	
charging	scenarios	on	the	power	system,	in	order	to	serve	different	types	of	vehicle	fleets.		
The	primary	goal	can	be	broadly	classified	into	the	following	three	interrelated	objectives:	

A. Design	and	develop	a	comprehensive	EV	Model	which	involves	the	following:		
1. Develop	detailed	EV	charging	windows/timeslots	that	are	available	for	each	individual	

vehicle	considered	in	the	study,	by	analyzing	individual	vehicles’	driving	pattern	
behavior,	as	shown	in	the	NHTS.	The	work	identified	potential	charging	
windows/timeslots	that	are	representative	of	actual	passenger	vehicle	travel	behavior	
and	provide	realistic	schedules	of	charging	options	available	for	different	passenger	
vehicle	classes	at	likely	charging	locations	(i.e.,	home	and	workplace).	

2. Develop	daily	electricity	demand	profiles	for	each	modelled	EV	by	considering	
different	shares	of	charging	locations	(workplace/home	charging)	and	different	rates	
of	charging	(1.4kW/3.3kW/6.6kW).	Charging	behavior	is	considered	under	business-as-
usual	(BAU)	and	two	optimized	recharging	scenarios:	a]	Price-Taker	Model,	and	b]	
Supply	Curve	Model.	The	EV	adoption	is	constrained	by	type	of	charger	used,	location	
and	duration	of	charger	access,	vehicle	size	and	daily	mileage.	

B. Develop	a	unit	commitment	and	dispatch	production	cost	model	of	the	Oahu	power	
system,	which	can	identify	optimal	power	system	operation	plans	based	on	the	half	hourly	
behavior	of	renewable	resources,	system	load,	demand	response,	and	conventional	
power	plants.	

	
C. Integrate	the	power	system	production	cost	model	with	the	EV	fleet	model	to	evaluate	

and	study	the	impact	of	the	two	different	EV	fleet	recharging	scenarios	on	system	load,	
and	power	system	costs.	The	study	also	compares	the	benefits	of	scheduling	EV	charging	
at	optimal	times	of	each	day	with	the	business-as-usual	(BAU)	scenario.		
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CHAPTER	2. LITERATURE	REVIEW	

2.1				Studies	on	PHEV	Electricity	Load	(Energy)	Impacts	Using	Different	Charging	Scenarios 
To	study	the	impact	of	EVs	on	the	grid,	an	estimate	of	how	much	energy	each	vehicle	

needs	each	day,	when	they	will	be	plugged	in	and	the	rate	at	which	they	will	draw	power	is	
needed.	In	order	to	determine	each	of	the	characteristic,	various	research	studies	have	used	
different	methods	and	assumptions.		

The	study	by	Kintner-Meyer	et	al.	[26]	estimated	the	threshold	of	PHEV	penetration	that	
can	be	achieved	using	the	idle	generation	capacity	of	the	existing	electric	infrastructure	for	12	
modified	North	American	Electric	Reliability	Council	(NERC)	regions.	The	idle	generation	
capacity	is	represented	by	the	difference	between	the	installed	system	capacity	and	the	system	
load.	The	modelled	vehicles	were	assumed	to	be	PHEVs	which	had	an	all-electric	driving	range	
of	33	miles,	before	re-charging,	or	the	use	of	gasoline	becomes	necessary.	The	energy	
requirements	per	mile	for	the	selected	light	duty	vehicle	classes	were	used	to	determine	the	
maximum	number	of	vehicles	that	can	be	charged	successfully	from	the	available	idle	
generation	after	satisfying	the	system	load	demand.		

Similarly,	the	study	by	Schneider	et	al.	[27]	focused	on	the	impacts	of	high	penetration	
of	PHEVs	on	the	Pacific	Northwest	distribution	Systems.	From	among	the	vehicle	energy	
requirement	assumptions	for	different	vehicle	classes	as	mentioned	in	[26],	they	chose	a	
battery	size	of	10	kWh.	In-order	to	model	the	PHEV	load	profile,	two	charging	scenarios	were	
selected.	The	first	charging	profile	was	obtained	from	the	study	[28],	in	which	charging	occurs	
at	all	times	of	the	day,	with	majority	of	the	charging	occurring	during	off-peak	hours,	in	
residential	locations	having	input	voltage	ratings	of	120V.	The	second	charging	profile	also	
known	as	a	“rapid-charging”	profile	assumes	that	all	the	charging	to	occur	in	residential	
locations	having	a	240V	connection,	within	a	3	hour	time	slot	(5	pm	–	8	pm).		

The	study	by	Parks	et	al.	[29]	which	models	the	impacts	of	PHEV	charging	on	the	Xcel	
Energy	Colorado	service	territory,	assumed	a	PHEV	with	an	all-electric	driving	range	of	20	miles	
for	modelling	simulations.	The	vehicle	design	and	performance	characteristics	were	based	on	
the	Advanced	Vehicle	Simulator	(ADVISOR)	vehicle	simulation	tool,	developed	by	[30].	The	
performance	assumptions	of	the	vehicle	fleet	data	was	obtained	from	the	driving	pattern	data	
from	227	vehicles	in	St.	Louis	in	2002,	which	were	tracked	using	GPS.	In-order	to	determine	the	
PHEV	load	profile,	four	charging	scenarios	were	evaluated	as	shown	in	the	table	below	Table	1.	
The	hourly	PHEV	load	profile	obtained	from	the	EV	charging	scenarios	were	added	to	the	
system	load	to	study	the	impact	of	EV	adoption.	
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Table	1.	Description	of	the	PHEV	Charging	Profiles	used	in	Parks	et	al.	[29]	

	
Previous	studies	by	Sioshansi	and	Denholm	[31][32],	Sioshansi	and	Miller	[33],	and	

Sioshansi	et	al.	[34]	have	used	specific	regional	empirical	driving	data	to	determine	the	PHEV	
load	profile	to	be	used	in	their	analyses.	They	model	the	Electricity	Reliability	Council	of	Texas	
(ERCOT)	electric	power	system	whereas	Sioshansi	et	al.	[34]	model	the	Ohio	power	system.	In	
all	the	4	studies,	vehicle	driving	pattern	data	collected	from	227	vehicles	in	the	St.	Louis,	
Missouri	metropolitan	area	by	the	East-West	Gateway	Coordinating	Council’s	(EWGCC)	
household	travel	survey	has	been	used.	The	Advanced	Vehicle	Simulator	(ADVISOR)	vehicle	
simulation	tool,	developed	by	[30]	uses	this	data	along	with	the	various	PHEV	charging	profile	
scenarios,	to	provide	battery	energy	requirement	usage	data	for	creating	the	PHEV	charging	
profiles.	

A	study	by	Lemoine	et	al.	[35]	determined	various	PHEV	load	charging	profiles	according	
to	3	different	charging	scenarios.	The	“Optimal	charging”	scenario	assumes	charging	during	
periods	of	lowest	demand	which	is	limited	just	to	the	nighttime	hours.	The	“Evening	charging”	
scenario	assumes	charging	to	begin	between	6	pm	and	8	pm	and	is	assumed	to	charge	
continuously	for	4	hours	whereas	the	“Twice	per	day”	scenario	uses	the	evening	charging	
timings	along	with	charging	at	the	morning	between	8	am	and	9	am.	Their	assumption	included	
that	each	PHEV	has	an	all-electric-range	(AER)	of	20	miles	for	the	first	two	scenarios	and	40	
miles	for	the	last	scenario.	

The	studies	by	Axsen	and	Kurani	[36]	and	Axsen	et	al.	[37]	analyzed	the	PHEV	energy	
impacts	in	California	by	creating	PHEV	recharge	scenarios	that	have	been	constructed	from	
survey	data	collected	from	a	sample	of	877	new	vehicle	buyers	in	California.	The	survey	
respondents	were	assigned	a	day	of	the	week,	and	reported	travel	information	for	that	
particular	24	hour	period.	In	order	to	determine	the	recharge	profiles,	both	the	studies	
evaluated	four	PHEV	recharging	scenarios	as	shown	in	Table	2.	

EV	Charging	Profile	 Description	 Charging	Rate	

Uncontrolled	Charging	
Charging	doesn’t	follow	any	pattern	
and	occurs	whenever	within	reach	of	
a	residential	outlet.	

1.4	kW	

Delayed	Charging	 Similar	to	uncontrolled	charging,	but	
charging	is	delayed	until	10	pm.	 1.4	kW	

Off-Peak	Charging	 Overnight	charging	occurs	during	
11pm	to	7am.	 3.2	kW	

Continuous	Charging	 Similar	to	uncontrolled	charging	but	
also	includes	public	charging	stations.	 1.4	kW	
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Table	2.	Description	of	the	PHEV	Charging	Profiles	used	in	[36]	and	[37]	

	
The	study	by	Kang	and	Recker	[38]	used	the	vehicle	travel	data	collected	from	the		

2000-2001	California	Statewide	Household	Travel	Survey,	to	study	the	potential	energy	and	
emission	impacts	of	PHEV	adoption	in	the	California	power	system.	PHEVs	having	all-electric	
ranges	of	20	miles	and	60	miles	have	been	considered	in	this	study.	In	order	to	determine	the	
charging	demand	due	to	the	adoption	of	PHEVs,	four	charging	scenarios	were	considered.		

Table	3.	Description	of	the	PHEV	Charging	Profiles	used	in	Kang	and	Recker	[38]	

	
In	order	to	perform	an	well-to-wheels	analysis	of	energy	use	and	greenhouse	gas	

emissions	of	PHEVs,	the	study	by	Elgowainy	et	al.	[39]	used	2001	NHTS	travel	data	to	develop	
PHEV	load	profiles	for	four	different	electric	power	systems	in	the	U.S.	The	simulation	model	
divided	the	PHEV	population	in	each	of	these	four	geographical	areas	according	to	AERs	of	10,	
20,	30,	and	40	miles,	depending	on	the	vehicle	travel	data.	Various	assumptions	about	battery	
energy	requirement	usage	and	fuel	economy	were	determined	using	Argonne’s	Powertrain	
System	Analysis	Toolkit	(PSAT)	model.	Three	different	charging	scenarios	i.e.	unconstrained	
charging,	constrained	charging,	and	smart	charging,	have	been	considered	to	determine	the	
PHEV	load	profiles	for	the	simulation	calendar	year	2020.	The	unconstrained	charging	scenario	
assumes	charging	at	home	after	the	final	trip	of	the	day	whereas	in	the	constrained	charging	
scenario,	charging	at	home	occurs	3	hours	after	the	final	trip	of	the	day.	The	smart	charging	
scenario	assumes	charging	to	occur	only	during	the	time-period	having	lowest	system	loads.	

The	study	by	Weller	[40]	performed	a	more	detailed	analysis	in	determining	different	
PHEV	load	profiles	according	to	various	different	charging	behaviors,	using	the	2001	National	

EV	Charging	Profile	 Description	

Plug	and	Play	 Drivers	are	assumed	to	charge	whenever	they	are	parked	
within	25ft	of	an	electrical	outlet.	

Universal\Enhanced		
workplace	access	

Similar	to	“plug	and	play”	charging	and	also	includes	
charging	at	workplace.		

Off-Peak	Only	 Similar	to	“plug	and	play”	charging	but	assumes	no	
charging	between	6	am	and	8	pm.	

EV	Charging	Profile	 Description	

End-of-day	Recharging	 Charging	occurs	after	the	last	trip	of	the	day.	
Uncontrolled	home	
Charging	 Charging	occurs	each	time	the	vehicle	is	parked	at	home.		

Controlled	Charging	 Charging	is	allowed	only	from	10	pm	through	the	next	
morning.		

Publicly-available	
electricity	Charging	

Charging	occurs	whenever	a	vehicle	is	parked	at	any	public	
location.	
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Household	Travel	Survey	(NHTS)	data	for	determining	the	daily	vehicle	usage	pattern.	Weller	
(2011)	evaluated	various	charging	scenarios	depending	upon	the	vehicle	charging	location	and	
charging	power	and	validated	that	managing	the	time	of	PHEV	charging	over	a	day	is	critical	in	
alleviating	the	impact	of	uncontrolled	PHEV	charging	which	coincides	and	affects	the	normal	
evening	peak	system	electricity	load.	

2.2				Studies	on	PHEV	Economic	and	Emission	Impacts	
The	study	by	Wang	et	al.	[41]	used	game	theory	models	to	study	the	PHEV	charging	

impacts	on	the	locational	marginal	prices	(LMPs).	After	evaluating	their	model	on	the	
Pennsylvania-New	Jersey-Maryland	Interconnection,	they	found	that	the	extra	load	due	to	
PHEV	recharging	has	a	significant	undesirable	effect	on	the	LMP	and	future	recharging	
infrastructures	such	as	real-time	pricing,	battery	stations,	or	vehicle-to-grid	technology	would	
be	useful	in	mitigating	this	effect.	PHEV	recharging	loads	have	been	calculated	depending	on	
the	various	assumed	charging	profiles	which	are	broadly	divided	into	2	categories:	price-
insensitive	and	price-sensitive	recharging.		The	price-insensitive	recharging	profiles	considers	
either	daytime	or	nighttime	recharging,	in	which	charging	is	allowed	from	8	am	to	7pm,	or	from	
8	pm	to	7	am	respectively.	The	price-sensitive	recharging	scenarios	represent	the	benefits	of	
future	recharging	infrastructures.	

The	study	by	Sioshansi	[42]	analyzes	the	cost	and	emission	impacts	of	PHEV	charging	
under	different	electricity	pricing	tariffs.	The	vehicle	model	and	the	driving	pattern	data	used	in	
this	study	has	been	adopted	from	previous	work	done	by	Sioshansi	and	Denholm	[31][32]	which	
uses	the	ADVISOR	vehicle	simulation	model,	with	the	driving	data	obtained	from	survey	
conducted	on	227	vehicles	in	the	St.	Louis,	Missouri	metropolitan	area.	The	modelling	is	carried	
out	on	the	Electricity	Reliability	Council	of	Texas	(ERCOT)	power	system.	The	five	different	PHEV	
charging	scenarios	evaluated	in	this	model	represent	PHEV	charging	under	different	electricity	
pricing	tariffs.	The	study	concluded	that	in	this	particular	case	study,	contrary	to	common	
expectation,	real-time	pricing	performed	worse	in	terms	of	impacts	on	both	the	net	cost	and	
emissions	than	all	the	other	considered	electricity	tariff	scenarios.		

The	Electric	Power	Research	Institute’s	(EPRI)	(Duvall	et	al.)	[28]	study	analyzed	the	
impact	of	PHEV	adoption	on	the	GHG	emissions	over	a	time	period	of	2010	to	2050.	The	study	
modelled	two	sets	of	scenarios	representing	varying	levels	(low,	medium,	and	high)	of	CO2	
intensity	and	PHEV	penetration.	The	PHEV	charging	load	profile	was	calculated	assuming	
maximum	charging	during	late	night	and	early	morning	hours,	and	modest	charging	during	the	
middle	of	the	day.	The	analysis	concluded	that	the	adoption	of	PHEVs	can	significantly	reduce	
the	consumption	of	petroleum	fuels	in	the	U.S.	thereby	achieving	a	cumulative	GHG	reduction,	
ranging	from	3.4	to	10.3	billion	metric	tons	of	CO2	emissions	from	2010	to	2050.		

2.3				Electric	Vehicle	Charging	Studies	in	Oahu	
The	Hawaii	Natural	Energy	Institute	(HNEI)	in	collaboration	with	GE	have	conducted	

studies	[43][44]	which	analyzed	the	potential	of	various	electric	vehicle	charging	scenarios	in	
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order	to	better	utilize	and	reduce	the	curtailed	renewable	energy	during	time	periods	of	high	
generation	and	low	demand	in	the	Oahu	power	system.		

The	study	[44]	builds	on	one	of	the	base	case	scenarios	of	high	penetration	of	wind	and	
solar	resources,	modelled	in	the	Oahu	Wind	Integration	Study	(OWIS)	for	the	Oahu	grid.	The	
high	renewable	energy	scenario	of	600	MW	from	OWIS,	was	extended	to	include	800	MW	and	
1000	MW,	to	study	the	impact	of	various	electric	vehicle	charging	scenarios,	electric	vehicle	
adoption	rates	and	storage	support,	in	order	to	minimize	the	curtailed	renewable	energy	in	the	
Oahu	grid.	On	a	fixed	load	system,	the	increase	in	the	renewable	energy	generation	capacity	in	
the	various	base	case	scenarios	also	gives	rise	to	the	increase	in	the	percent	of	curtailed	energy.	
This	analysis	assumes	that	the	total	amount	energy	needed	for	the	EV	fleet	charging	is	exactly	
equal	to	the	total	amount	of	curtailed	renewable	energy	considered	in	a	particular	base	case	
scenario,	i.e.,	the	daily	EV	charging	energy	has	been	calculated	by	equally	distributing	the	
annual	curtailed	renewable	energy	over	365	days.	This	study	evaluated	7	EV	charging	profiles	
which	could	achieve	the	maximum	reduction	in	curtailed	renewable	energy.	The	model	
simulations	showed	that	for	a	base	case	scenario	of	1000	MW	of	renewable	energy	(700	MW	
wind,	300	MW	solar),	the	potential	reduction	in	the	curtailment	of	renewable	energy	ranged	
from	40%	to	53%,	with	the	“daily	perfect	tracking”	and	“annual	uniform	charging”	EV	charging	
profiles	being	the	best-case	and	the	worst-case	options	respectively.	The	“daily	perfect	
tracking”	profile	has	been	considered	as	a	theoretical	upper	boundary	which	assumes	perfect	
synchronization	between	renewable	energy	and	the	load.		

The	study	[43]	builds	on	the	basic	data	structure	of	[44],	to	study	in	detail	the	impact	of	
different	EV	charging	profiles	on	the	Oahu	power	system,	in	order	to	minimize	the	curtailed	
renewable	energy.	The	model	considers	four	base	cases	with	no	EV	charging	and	6	scenarios	of	
different	EV	charging	profiles	for	each	of	the	base	case.	For	the	first	four	EV	charging	scenarios,	
modelling	was	done	using	a	production	cost	simulation	model	(GE-MAPS)	whereas	the	
remaining	two	charging	profiles	were	modelled	using	a	spread-sheet	model.	The	charging	
profiles	used	in	this	study	are	shown	in	the	Table	5.	The	study	concluded	that	although	
considered	“unrealistic”,	the	“Daily	Perfect	Tracking”	charging	scenario	captured	most	of	the	
potentially	curtailed	renewable	energy.	

The	study	[45]	uses	the	future	base	case	scenarios	with	high	penetration	of	wind	and	
solar	resources	developed	by	GE	in	the	study	[43]	to	analyze	the	effect	of	EV	charging	scenarios	
to	reduce	the	curtailment	of	renewable	energy	in	Oahu.	The	study	validated	the	results	
obtained	in	the	study	done	by	GE	and	suggested	that	out	of	the	4	considered	EV	charging	
scenarios,	the	EV	charging	profile	“Annual,	Profile	2”	is	more	practical	and	hence	can	be	
implemented	by	using	various	incentive	programs.	
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Table	4.	Description	of	the	EV	Charging	Profiles	used	either	in	studies	[43]–[45]	

 

Table	5.	EV	Charging	Profiles	used	in	studies	[43]–[45]	

															Reference	Source	
	
	

EV	Charging	Profile	

Electric	Vehicle	
Charging	as	an	
Enabling	
Technology	[44]	

Oahu	
Electric	
Vehicle	
Charging	
Study	[43]	

Strategic	Use	of	Electric	
Vehicle	Charging	to	
Reduce	Renewable	Energy	
Curtailment	on	Oahu	[45]	

Annual	Uniform	Charging	 x	 x	 x	
Annual	Perfect	Tracking	 x	 x	 x		
Annual,	Profile	1	 x	 x	 x	
Annual,	Profile	2	 x	 x	 x	
Annual,	85%	 x	 x	 	
Monthly	Perfect	Tracking	 x	 	 	
Daily	Perfect	Tracking	 x	 x	 	

2.4				Research	Contribution	towards	Literature	
The	simulation	model	developed	in	this	study	uses	actual	driving	pattern	data	collected	

from	the	2009	National	Household	Travel	Survey	(NHTS)	conducted	by	the	U.S.	Department	of	
Transportation	(DOT).	This	national	survey	provides	one	of	the	most	recent	and	comprehensive	
dataset	on	transportation	and	travel	pattern	behavior	in	the	United	States,	which	is	publicly	
available.	Prior	PHEV	load	profile	studies	such	as	Kintner-Meyer	et	al.	[26],	Schneider	et	al.	[27],	
Stephan	and	Sullivan,	Lemoine	et	al.	[35],	Denholm	and	Short,	Duvall	et	al.	[28],	Hadley	and	
Tsvetkova,	Wang	et	al.	[41]	,	HNEI/GE	studies	[43],	[45]	have	generally	assumed	a	fixed	number	

EV	Charging	Profile	 Description	

Annual	Uniform	Charging	 Daily	charging	is	equally	distributed	all	year	

Annual	Perfect	Tracking	 Daily	charging	tracks	the	annual	average	of	any	hour	

Annual,	Profile	1	 70%	night	charging,	30%	day,	including	5:00-9:00	pm	Peak	

Annual,	Profile	2	 70%	night	charging,	30%	day,	excluding	5:00-9:00	pm	Peak	

Annual,	85%	 85%	of	charging	between	9:00	pm	–	7:00	am	

Monthly	Perfect	Tracking	 Daily	charging	for	each	hour	set	at	monthly	average	
curtailed	for	that	month	

Daily	Perfect	Tracking	 Charging	is	proportional	to	daily	curtailed	load	shape	
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of	miles	as	the	daily	travel	distance	driven	by	vehicles	and	thus	do	not	address	the	different	
prominent	driving	pattern	variations.		

This	study	on	the	other	hand	evaluates	individual	driving	patterns	in	a	much	detailed	
level,	in	which	trip	by	trip	driving	pattern	distributions	were	determined	for	each	individual	
vehicle.	These	detailed	distributions	provide	an	accurate	and	realistic	representation	of	the	
actual	driving	pattern	in	the	United	States,	which	were	used	to	determine	potential	EV	charging	
scenarios.	These	charging	scenarios	thus	provide	a	more	reasonable	and	accurate	
representation	of	the	impact	of	EVs	in	the	current	and	future	passenger	transportation	sector.		

Using	these	driving	pattern	distributions,	EV	charging	windows/timeslots	were	
calculated	by	determining	the	maximum	possible	time	a	vehicle	is	parked	in	a	potential	
charging	location	(i.e.	home	and	workplace).	These	potential	charging	timeslots	provide	the	EV	
owner	the	most	comprehensive	and	realistic	charging	options	available,	as	each	option	is	
unique	to	that	particular	vehicle	and	is	derived	from	thorough	analysis	of	its	driving	pattern	
behavior.		

Although	many	of	the	PHEV	impact	studies	have	been	performed	on	localized	regional	
power	system	grids	such	as	Colorado,	Texas,	Ohio,	California,	PJM	(Pennsylvania–New	Jersey–
Maryland)	electric	power	systems,	but	very	little	study	has	been	done	on	the	Oahu	power	grid	
except	the	ones	by	HNEI/GE.	The	HNEI/GE	studies	mainly	concentrated	on	analyzing	how	best	
the	different	assumed	EV	Charging	profiles	perform	in	reducing	the	curtailment	(i.e.,	spillage)	
renewable	energy	in	the	Oahu	power	grid.	The	most	important	assumption	used	by	them	was	
to	limit	the	total	electricity	demand	due	to	EV	charging	to	be	equal	to	the	amount	of	curtailed	
renewable	energy	considered	in	each	base	case	scenario,	where	the	maximum	annual	curtailed	
energy	ranges	from	201	GWh	to	736	GWh	for	base	case	scenarios	in	which	future	renewable	
power	generation	projects	ranging	from	600	MW	to	1000	MW	were	assumed	to	be	integrated	
into	the	Oahu	power	system.		

The	amount	of	energy	needed	for	charging	a	particular	EV	valuated	in	this	study	are	
calculated	as	a	function	of	charging	location	(i.e.	home	and	workplace	charging)	and	the	
charging	rate	for	different	designs	of	passenger	vehicles	(car,	van,	SUV,	pick-up	truck)	UNDER	
business-as-usual	and	two	optimized	recharging	scenarios:	1.	Price-Taker	Model,	and	2.	Supply	
Curve	model.		

Although	the	model	can	be	customized	to	model	both	PHEVs	and	BEVs,	but	the	vehicles	
simulated	here	have	been	assumed	to	only	represent	full	battery	electric	vehicles	(BEVs).	This	
assumption	is	based	broadly	on	the	following	factors	which	are	specific	for	niche	markets	such	
as	like	Hawaii.		

Due	to	its	unique	geographical	location	as	compared	to	all	other	states	in	the	U.S,	the	
Hawaiian	Islands	and	especially	the	island	of	Oahu,	which	with	a	total	land	area	of	just	600.7	
square	miles	(i.e.	1555.9	square	kilometers)	and	with	almost	70%	of	the	resident	population	of	
the	state	[46],	forms	an	ideal	site	to	analyze	the	impacts	of	large	scale	adoption	of	EVs	and	how	
different	optimal	EV	charging	can	benefit	such	an	unique	power	system.	

With	the	extreme	dimension	of	Oahu	ranging	from	44	miles	(71	km)	long	and	30	miles	
(48	km)	across,	the	work	assumed	that	all	simulated	vehicles	can	have	a	maximum	travel	range	
of	100	miles,	which	is	very	much	consistent	with	the	maximum	number	of	miles	that	can	be	
travelled	with	a	single	electric	charge	(AER)	of	some	of	the	current	BEVs	in	the	market	today.	As	
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suggested	by	the	study	in	[47],	with	the	current	increase	in	the	all-electric	ranges	of	BEVs	and	
with	more	charging	facilities\infrastructure	becoming	available,	BEVs	tend	to	mitigate	
consumers	range	anxiety	and	thus	project	themselves	as	a	forerunner	to	out	compete	PHEVs	in	
the	future	scenario	of	large-scale	mass	adoption	of	EVs.	This	adoption	behavior	can	also	be	
inferred	from	the	2013	electric	vehicle	registrations	data	analyzed	in	the	study	[48],	in	which	
apart	from	California,	Hawaii	had	the	highest	new	vehicle	share	of	BEVs	with	about	1.2%,	
whereas	the	new	vehicle	share	of	PHEVs	in	Hawaii	tended	to	be	around	0.3%.	
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CHAPTER	3. MODEL	DESIGN	AND	DESCRIPTION		
In	order	to	understand	the	impacts	of	EVs	on	the	Hawaii	electric	power	system,	it	is	

necessary	to	develop	a	comprehensive	EV	model	which	takes	into	consideration	critical	EV	
characteristics.	The	EV	model	developed	in	this	study	assumed	that	Hawaii	might	have	a	large	
number	of	electric	vehicles,	which	were	driven	in	similar	patterns	to	the	nationally	
representative	vehicle-day	data	given	by	NHTS	2009.			

Charging	availability	and	requirements	profiles	were	then	created	for	all	these	vehicles	
based	on	the	driving	pattern	behavior	determined	from	NHTS	2009.	Each	vehicle	was	then	
assigned	a	feasible	charging	strategy	(Level	1,	Level	2a,	or	Level	2b)	depending	upon	the	
charging	location	(home	or	work),	battery	capacity	and	time	available	for	charging.	Vehicle	
charging	simulations	were	then	performed	under	two	scenarios:	business-as-usual	(charge	as	
fast	as	possible	as	soon	as	they	reach	their	charging	location)	or	optimal	(charge	at	the	best	
times	during	the	window	when	they	are	plugged	in	at	the	charging	location).		

In	this	study,	two	models	of	the	power	system	were	implemented.	One	model	assumed	
EV	owners	paid	dynamic	electricity	prices	equal	to	the	historical	hourly	marginal	cost	in	2014,	
and	that	EV	charging	did	not	change	these	prices.	The	other	used	a	supply	curve	for	electricity	
based	on	the	properties	of	the	Oahu	generation	system	(including	existing	wind	and	solar	
equipment),	and	optimized	EV	charging	throughout	the	day	based	on	this	supply	curve.	Finally,	
using	each	of	these	models	the	load	profiles,	and	costs	of	the	business-as-usual	and	optimized	
charging	approaches	were	compared.		

3.1				Electric	Vehicle	Data	Characteristics	
The	EV	model	developed	in	this	model,	identifies	and	develops	several	important	vehicle	

and	travel	characteristics.	These	characteristics	are	important	in	simulating	a	vehicle	model	to	
represent	a	large	EV	fleet.	Using	the	NHTS	2009	dataset,	a	sequence	of	pre-processing	
operations	extracted	data	on	all	the	trips	made	by	individual	vehicles	on	individual	days.	Several	
important	travel	characteristics	such	as:	how	far	each	vehicle	traveled	on	each	day;	and	when	
would	have	been	the	best	opportunities	for	a	replacement	EV	to	charge	at	work	or	home,	were	
identified.	Simple	models	of	EV	replacements	for	the	fossil	fuel	vehicles	were	then	created,	with	
one	model	corresponding	to	each	vehicle	size	class.	Each	EV	was	assumed	to	have	a	100	mile	
electric	range,	and	an	efficiency	based	on	standard	models	for	each	vehicle	size.	Based	on	the	
miles	driven	and	the	type	of	vehicle,	the	amount	of	electricity	that	would	be	required	on	each	
vehicle-day	if	the	gasoline/diesel	vehicle	were	replaced	by	an	EV	was	determined.	All	possible	
EV	vehicle-days	were	then	assigned	to	a	feasible	charging	strategy	(Level	1,	Level	2a,	or	Level	
2b)	depending	upon	the	location	of	charging	(home	or	work).	These	steps	are	described	in	more	
detail	below.	These	vehicle	fleets	are	then	modelled	in	section	3.4	as	loads	to	be	served	by	the	
power	system.	
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3.1.1				Electric	Vehicle	Data	and	Assumptions	
The	National	Household	Travel	Survey	(NHTS)	is	a	national	survey	sponsored	by	the	U.S.	

Department	of	Transportation	(DOT).	NHTS	provides	comprehensive	data	on	travel	and	
transportation	patterns	in	the	United	States.	This	detailed	transportation	data	inventory	is	
publicly	available	and	can	be	obtained	from	the	NHTS	website	[49]	for	the	study	year	2009.	
NHTS	transportation	data	helps	transportation	planners,	academic	researchers,	and	policy	
makers	to	understand	personal	travel	behavior	at	the	individual	and	household	level,	and	
analyze	the	trends	in	travel	characteristics	over	time,	relate	the	travel	behavior	with	the	
demographics	of	the	traveler,	and	the	demographics	with	travel	over	time.		

	

3.1.1.1				NHTS	Dataset	Characteristics	
The	NHTS	2009	survey	was	conducted	over	a	13-month	period	from	March	2008	

through	April	2009	so	that	the	seasonal	travel	variations	are	aptly	represented.	The	survey	
covered	all	members	of	selected	households	for	one	day,	asking	them	to	list	all	the	trips	they	
made	on	that	particular	study	day.	The	result	is	a	collection	of	snapshots	of	one	day	of	travel	for	
150,147	households.	The	survey	had	travel	days	assigned	for	all	seven	days	of	the	week,	
including	holidays,	to	represent	travel	across	weekday	and	weekend	variations.	The	data	was	
collected	from	survey	interviews	from	almost	150,147	households	and	351,275	persons	in	all	50	
states	and	the	District	of	Columbia,	in-order	to	represent	all	geographical	areas	[50].	A	typical	
24-hour	travel	day	is	from	4:00	AM	of	the	day	assigned	until	3:59	AM	of	the	following	day.		

Four	main	data	files	are	associated	with	the	2009	NHTS	dataset:	
	
1. Household	File:		Data	collected	from	each	household	(one	record	per	household).		

2. Person	File:	Data	collected	from	each	interviewed	household	member	(one	record	per	
person).	

3. Vehicle	File:	Data	collected	from	each	household’s	vehicles	(one	record	per	household	
vehicle).	

4. Travel	Day	Trip	File:	Data	collected	for	each	trip	a	household	member	made	on	a	particular	
travel	day	(one	record	per	travel	day	person	trip).	
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	 	 PERSON	FILE	 	 TRAVEL	DAY	FILE	

	 	 • Contains	one	record	
per	person	

• Characteristics	of	
persons	

• Worker	Information	
• Driver	Information	
• Customer	satisfaction	

	

• Contains	one	record	
per	travel	day	
person	trip		

• Daily	trips	and	their	
characteristics	

	

	

HOUSEHOLD	FILE	

• Contains	one	record	per	
household		

• Household	
characteristics	

• Household	members	

	 	 	 	
	 VEHICLE	FILE	 	

	
	

• Contains	one	record	per	
vehicle		

• Data	related	to	each	of	the	
household’s	vehicles	

• Make,	model,	year	
• Annualized	vehicle	miles	
• Odometer	readings	

	

	

	

	

Figure	15.	NHTS	2009	Data	File	Structure	[50]	
	

For	the	research	analysis	presented	here,	the	dataset	files	Vehicle	file	and	Travel	day	
trip	file	have	been	used.	These	files	in	the	Dbase	format	were	obtained	from	the	NHTS	2009	
website.	

1. Vehicle	File	(VEHV2PUB):	The	sample	size	of	the	dataset	is	309,163	records.	This	dataset	
contains	around	61	unique	data	attributes	to	represent	each	household	vehicles	
characteristics.	From	among	all	the	attributes,	six	attributes	as	shown	in	Table	6	have	been	
utilized	in	this	study	(HOUSEID,	VEHID,	VEHTYPE,	TRAVDAY,	TDAYDATE,	and	BESTMILE).	
Although	this	is	a	national	dataset,	465	vehicle	records	from	Hawaii	are	also	included	in	the	
dataset.	
	
	

Table	6.	Description	of	Vehicle	File	Variables	
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Variable	Name	 Variable	Description	

HOUSEID	 Eight	digit	household	ID	number	
	

VEHID	 Vehicle	number	used	for	trip	
VEHTYPE	 Vehicle	type	
TRAVDAY	 Travel	day	date	with	month	and	year	
TDAYDATE	 Travel	Day	–	Day	of	Week	
BESTMILE	 Best	estimate	of	annual	miles	

	
2. Travel	Day	Trip	File	(DAYV2PUB):	The	sample	size	of	this	dataset	is	1,167,321	records.	This	

dataset	contains	112	unique	data	attributes	to	represent	each	trip	a	household	member	
made	on	a	particular	travel	day.	From	among	all	the	attributes,	only	15	have	been	utilized	in	
this	study.	(HOUSEID,	VEHID,	VEHTYPE,	DRVR_FLG,	TDAYDATE,	TRAVDAY,	STRTTIME,	
ENDTIME,	DWELTIME,	TRPMILES,	TRVL_MIN,	AWAYHOME,	TRIPPURP,	WHYTO,	WHYFROM).	
Although	this	is	a	national	dataset,	1,973	trip	records	from	Hawaii	are	also	included	in	the	
dataset.	These	fields	are	discussed	in	more	detail	below.	
	

The	two	essential	dataset	files	collected	from	the	NHTS	2009	travel	survey	database	
were	linked	with	each	other	using	the	common	variables	HOUSEID,	VEHID,	and	VEHTYPE	as	also	
shown	in	references	[51],	[52].	Our	goal	was	to	obtain	a	complete	list	of	trips	made	by	each	
vehicle	in	the	survey.	According	to	[50],	Vehicle	file	and	Travel	day	trip	files	can	be	linked	with	
each	other	using	the	HOUSEID	and	VEHID	common	variables.	A	sequence	of	pre-processing	
operations,	as	mentioned	in	the	next	section	were	performed	on	the	above	dataset	in	order	to	
extract	the	required	data,	that	are	necessary	in	the	scope	of	this	research	study.	

3.1.1.2				Data	Extraction	from	2009	NHTS	Dataset	
	
1. VEHICLE	TYPE:	In	this	study,	the	types	of	vehicles	that	are	considered	are	divided	into	four	

categories	[53]	as	shown	in	Table	7.	The	household	vehicle	fleet	which	represent	a	major	
portion	of	the	transportation	sector	fleet	are	responsible	for	around	50%	of	the	U.S	
Greenhouse	gas	emissions.	All	these	vehicles	are	good	candidates	for	electrification,	and	
thus	were	chosen	in	this	study. 

Table	7.	Description	of	VEHTYPE	variable	

Variable	Name	 Description		 Code/Range	

VEHTYPE	 Type	of	Vehicle	 01	=	Automobile/car/station	wagon	
02	=	Van	(mini,	cargo,	passenger)	
03	=	Sports	utility	vehicle	
04	=	Pickup	truck	

 
 
2. VEHICLE	ID:		Individual	vehicles	within	each	household	are	identified	by	a	unique	two-digit	

number.	This	variable	can	be	found	in	both	the	Vehicle	file	and	the	Travel	Day	Trip	file.	In	
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the	pre-processing	phase	all	trip	records	corresponding	to	values	“-1”	(Appropriate	skip),	“-
7”	(Refused)	and	“-8”	(Don't	know)	have	been	discarded.	
	

Table	8.	Description	of	VEHID	variable	

Variable	Name	 Description		 Code/Range	

VEHID	 Household	
Vehicle	ID	

01-28	=	Household	Vehicle	used	for		
trip	

 
 
3. DRIVER	IDENTIFICATION	FLAG: The	respondents	were	asked	to	self-report	if	they	were	the	

driver	or	a	passenger	in	that	particular	trip	in	the	personally	owned	vehicle	(POV).	Only	the	
records	having	variable	values	of	“01”	(self-reported	as	driver)	were	considered	for	this	
study.	This	was	done	to	ensure	that	each	trip	by	each	vehicle	was	included	only	once,	
eliminating	additional	records	reported	by	non-driving	passengers.	

	

Table	9.	Description	of	DRVR_FLG	variable 

Variable	Name	 Description		 Code/Range	

DRVR_FLG	 Subject	was	
driver	on	this	
trip	

01	=	Self-reported	as	driver	for	the	
Travel	Day	trip	

 
 

4. ANNUAL	VEHICLE	MILES: The	best	estimate	of	the	annual	miles	driven	by	each	vehicle	is	
obtained	from	the	“BESTMILE”	variable.	This	is	a	derived	variable	which	was	developed	by	
the	Oak	Ridge	National	Lab.	Derived	variables	are	those	variables	which	are	not	present	in	
the	NHTS	2009	survey	questionnaire	but	are	created	later	by	either	renaming	
questionnaire	variables,	or	combining	multiple	variables,	or	by	deriving	the	variable	from	
external	sources	other	than	the	survey	questionnaire.	Additional	detailed	explanation	
about	how	each	of	the	derived	variables	in	the	NHTS	dataset	was	created	can	be	obtained	
from	the	‘Derived	Variables	Descriptions’	section	of	[50].	

	

Table	10.	Description	of	BESTMILE	variable	

Variable	Name	 Description		 Code/Range	

BESTMILE	 Best	estimate	of	
annual	miles	

0	-	200000	
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5. TRIP	START	TIME: The	travel	day	trip	start	time	is	obtained	from	the	‘STRTTIME’	variable	
and	is	represented	in	the	military	time	format	(0001	through	2400	hours).	

	

Table	11. Description	of	STRTTIME	variable 

Variable	Name	 Description		 Code/Range	

STRTTIME	 Trip	START	time	
in	military	

0000-2359	

 
 
6. TRIP	END	TIME: The	travel	day	trip	end	time	is	obtained	from	the	‘ENDTIME’	variable	and	is	

represented	in	the	military	time	format	(0001	through	2400	hours).	 
	

Table	12.	Description	of	ENDTIME	variable 

Variable	Name	 Description		 Code/Range	

ENDTIME	 Trip	END	time	in	
military	

0000-2359	

 
 
7. TRIP	TRAVEL	DATE:  The	‘TDAYDATE’	variable	gives	the	year	and	month	of	the	Travel	day	on	

which	that	particular	trip	was	made.	The	values	are	represented	in	YYYYMM	format.	The	
values	range	from	March	2008	to	April	2009. 

	

Table	13.	Description	of	TDAYDATE	variable 

Variable	Name	 Description		 Code/Range	

TDAYDATE	 Date	of	Travel	
Day	(YYYYMM)	

200803	–	200812,	
200901	–	200904	

 
 
8. TRIP	TRAVEL	DAY: The	‘TRAVDAY’	variable	gives	the	day	of	the	week	of	the	Travel	day	on	

which	that	particular	trip	was	made.	The	values	range	from	01	to	07	representing	Sunday	to	
Saturday,	respectively. 

	

	

	

Table	14.	Description	of	TRAVDAY	variable 
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Variable	Name	 Description		 Code/Range	

TRAVDAY	 Travel	day	-	day	
of	week	

01	=	Sunday		
02	=	Monday		
03	=	Tuesday	
04	=	Wednesday		
05	=	Thursday		
06	=	Friday		
07	=	Saturday	

 
9. TRIP	DESTINATION: Based	on	the	trip	destination,	the	‘WHYTO’	variable	gives	the	purpose	

of	the	trip.	
	

Table	15.	Description	of	WHYTO	variable	

Variable	Name	 Description		 Code/Range	

WHYTO	 Purpose	or	
destination	of	
trip		

01	=	Home		
10	=	Work		
11	=	Go	to	work		
12	=	Return	to	work	
13	=	Attend	business	meeting/trip	
14	=	Other	work	related	

 
10. TRIP	START	LOCATION: The	‘WHYFROM’	variable	gives	the	location	from	which	the	trip	

originated.  
Table	16.	Description	of	WHYFROM	variable 

Variable	Name	 Description	 Code/Range	

WHYFROM	 Location	from	
which	the	trip	
started	

01	=	Home		
10	=	Work		
11	=	Go	to	work		
12	=	Return	to	work	
13	=	Attend	business	meeting/trip	
14	=	Other	work	related	

	
	
11. DWELTIME:	This	variable	gives	the	calculated	time	at	destination	(in	minutes)	which	is	

calculated	from	the	trip	start	time	(STRTTIME)	and	the	trip	end	time	(ENDTIME).	
	

Table	17.	Description	of	DWELTIME	variable	
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Variable	Name	 Description		 Code/Range	

DWELTIME	 Calculated	Time	
(minutes)	at	
Destination	

0-1439	
-9	=	Not	ascertained	

	

3.1.1.3					Identification	of	Location	of	Charging	
	

1. CHARGING	LOCATION:	This	is	a	field	created	to	explicitly	identify	locations	which	could	be	
used	for	EV	charging.	A	pre-processing	operation	was	used	to	identify	locations	where	
charging	could	potentially	occur,	either	at	work	or	at	home.	Other	potential	charging	
locations,	such	as	shopping	centers	have	not	been	considered	in	this	study.		

	

Table	18.	Description	of	CHARGE_LOCATION	variable	

Variable	Name	 Description	 Code/Range	

CHARGE_LOCATION	 Location	of	EV	charging	 ‘Home’	
‘Work’	

	

The	pre-processing	operations	classified	the	vehicle	trips	dataset	broadly	into	two	domains	
(‘Home’,	‘Work’).	The	main	purpose	of	this	classification	was	to	identify	the	vehicles	which	
could	potentially	be	replaced	by	EVs.	The	NHTS	2009	dataset	provides	trip	purposes	of	
each	trip	on	the	survey	day,	which	are	represented	by	the	variable	‘WHYTO’	as	shown	in	
Table	15.	The	vehicle	trips	which	have	trip	destination	as	home	(WHYTO	=	01)	and	were	
parked	there	for	more	than	2	hours	have	been	considered	as	candidates	for	home	
charging.	In	order	to	specifically	identify	these	trips,	the	CHARGE_LOCATION	variable	was	
updated	to	‘Home’.	Similarly,	vehicle	trips	which	have	their	trip	destinations	reported	as	
‘Work’	(WHYTO	=	10),	‘Go	to	work’	(WHYTO	=	11),	‘Return	to	work’	(WHYTO	=	12),	‘Attend	
business	meeting/trip’	(WHYTO	=	13),	‘Other	work	related’	(WHYTO	=	14),	have	been	
considered	as	candidates	for	work-place	charging.	The	CHARGE_LOCATION	variable	was	
updated	to	‘Work’,	in	order	to	represent	these	particular	vehicle	trip	records.		
	

3.1.1.4					Identification	of	Times	When	EVs	Were	Parked	at	Home	or	Work	
In	order	to	explicitly	identify	times	when	the	vehicle	was	parked	for	an	extended	

duration	at	work	or	at	home,	the	fields	‘PARKING_STARTTIME’,	‘PARKING_ENDTIME’,	and	
‘TIME_PARKED’	were	created	and	added	to	the	travel	day	table.	These	fields	are	used	to	
identify	the	single	longest	at-home	and	at-work	charging	windows	that	could	potentially	occur	
each	day.		
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Table	19.		Description	of	PARKING_STARTTIME	variable	

Variable	Name	 Description		 Code/Range	

PARKING_STARTTIME	 Parking	START	time	in	
military	

0000-2359	

	

Table	20.	Description	of	PARKING_ENDTIME	variable	

Variable	Name	 Description		 Code/Range	

PARKING_ENDTIME	 Parking	END	time	in	
military	

0000-2359	

	

Table	21.	Description	of	TIME_PARKED	variable	

Variable	Name	 Description		 Code/Range	

TIME_PARKED	 Total	Time	(minutes),	the	vehicle	
was	parked	at	charging	location	

0-1439	

	
Based	on	the	location	of	charging,	the	methods	and	assumptions	used	to	determine	these	
parking	windows/timeslots	to	be	used	for	charging,	have	been	described	in	more	detail	below.	
	
1. Workplace	Parking:	The	vehicle	trips	which	have	been	identified	as	candidates	for	charging	

at	work	(CHARGE_LOCATION	=	Work)	and	were	parked	there	for	more	than	2	hours	have	
been	considered	here.	The	start	(PARKING_STARTTIME)	and	end	time	(PARKING_ENDTIME)	
of	the	timeslot	the	vehicle	is	parked	at	workplace	is	determined	from	the	end	time	
(ENDTIME)	of	the	vehicle’s	current	trip	to	reach	work	and	the	start	time	(STRTTIME)	of	the	
vehicle’s	immediate	next	trip.	Only	those	trips	for	that	particular	vehicle	were	selected	in	
which	the	trip	destination	(WHYTO)	matches	exactly	to	the	start	location	(WHYFROM)	of	
the	next	immediate	trip.	Parking	at	workplace	included	the	following	subdivisions:	
	
A. Over-day	Parking:	These	are	the	vehicles	that	are	parked	at	work	and	their	parking	start	

time	(PARKING_STARTTIME)	starts	sometime	between	12:00	am	-	11:59	pm	and	ends	
(PARKING_ENDTIME)	between	12:00	am	-	11:59	pm	of	the	same	day.	The	total	amount	
of	time	parked	at	work	is	calculated	from	the	parking	start	time	(PARKING_STARTTIME)	
and	parking	end	time	(PARKING_ENDTIME)	fields.	The	‘TIME_PARKED’	field	is	
accordingly	updated	and	is	compared	with	the	value	from	the	‘DWELTIME’	field	for	
consistency.	The	calculation	of	the	‘TIME_PARKED’	field	value	is	important	as	in	some	
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instances	the	‘DWELTIME’	value	obtained	from	the	initial	NHTS	2009	dataset	might	not	
have	been	ascertained	(DWELTIME	=	-9).	

B. Overnight	Parking:	These	are	the	vehicles	that	are	parked	at	work	and	their	parking	
start	time	(PARKING_STARTTIME)	starts	sometime	between	12:00	am	-	11:59	pm	and	
ends	up	in	the	next	travel	day.	The	total	amount	of	time	parked	at	work	is	calculated	
from	the	parking	start	time	(PARKING_STARTTIME)	and	parking	end	time	
(PARKING_ENDTIME)	fields.	The	‘TIME_PARKED’	field	is	accordingly	updated	and	is	
compared	with	the	value	from	the	‘DWELTIME’	field	for	consistency.	The	calculation	of	
the	‘TIME_PARKED’	field	value	is	important	as	in	some	instances	the	‘DWELTIME’	value	
obtained	from	the	initial	NHTS	2009	dataset	might	not	have	been	ascertained	
(DWELTIME	=	-9).	

2. Home	Parking:	The	vehicle	trips	which	have	been	identified	as	candidates	for	charging	at	
home	(CHARGE_LOCATION	=	Home)	and	were	parked	there	for	more	than	2	hours	have	
been	considered	here.	The	start	(PARKING_STARTTIME)	and	end	time	(PARKING_ENDTIME)	
of	the	timeslot	the	vehicle	is	parked	at	home	is	determined	from	the	end	time	(ENDTIME)	of	
the	vehicle’s	current	trip	to	reach	home	and	the	start	time	(STRTTIME)	of	the	vehicle’s	
immediate	next	trip.	Only	those	trips	for	that	particular	vehicle	were	selected	in	which	the	
trip	destination	(WHYTO)	matches	exactly	to	the	start	location	(WHYFROM)	of	the	next	
immediate	trip.	Parking	at	home	included	the	following	subdivisions:	
	
A. Over-day	Parking:	These	are	the	vehicles	that	are	parked	at	home	and	their	parking	

start	time	(PARKING_STARTTIME)	starts	sometime	between	12:00	am	-	11:59	pm	and	
ends	(PARKING_ENDTIME)	between	12:00	am	-	11:59	pm	of	the	same	day.	The	total	
amount	of	time	parked	at	work	is	calculated	from	the	parking	start	time	
(PARKING_STARTTIME)	and	parking	end	time	(PARKING_ENDTIME)	fields.	The	
‘TIME_PARKED’	field	is	accordingly	updated	and	is	compared	with	the	value	from	the	
‘DWELTIME’	field	for	consistency.	The	calculation	of	the	‘TIME_PARKED’	field	value	is	
important	as	in	some	instances	the	‘DWELTIME’	value	obtained	from	the	initial	NHTS	
2009	dataset	might	not	have	been	ascertained	(DWELTIME	=	-9).	

B. Overnight	Parking:	These	are	the	vehicles	that	are	parked	at	work	and	their	parking	
start	time	(PARKING_STARTTIME)	starts	sometime	between	12:00	am	-	11:59	pm	and	
ends	up	in	the	next	travel	day.	The	total	amount	of	time	parked	at	work	is	calculated	
from	the	parking	start	time	(PARKING_STARTTIME)	and	parking	end	time	
(PARKING_ENDTIME)	fields.	The	‘TIME_PARKED’	field	is	accordingly	updated.	The	
calculation	of	the	‘TIME_PARKED’	field	value	is	extremely	important	in	this	particular	
case	of	overnight	home	parking,	as	the	‘DWELTIME’	value	for	these	specific	type	of	trips	
obtained	from	the	initial	NHTS	2009	dataset	is	‘Not	ascertained’	(DWELTIME	=	-9).	
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3.1.2				Vehicle	Characteristics/Driving	Pattern	Analysis	

3.1.2.1				Vehicle	Type	
In	this	study,	the	types	of	vehicles	that	are	considered	are	divided	into	four	categories.	

The	passenger	vehicle	fleet	which	represent	the	major	chunk	of	the	transportation	sector	fleet	
are	responsible	for	around	50%	of	the	U.S	Greenhouse	gas	emissions	are	thus	the	perfect	
candidates	for	this	study.		

	

Table	22.	Distribution	of	vehicles	in	the	processed	NHTS	2009	
dataset	according	to	vehicle	type	

 
 

 
 
 
 
 
 
 
 

3.1.2.2				Daily	Vehicle	Miles	of	Travel	
The	number	of	miles	driven	by	a	vehicle	is	an	important	criterion	in	understanding	and	

planning	the	vehicle	characteristics.	According	to	the	Highway	Statistics	2013,	released	by	the	
U.S.	Department	of	Transportation	–	Federal	Highway	Administration	[54],	the	average	number	
of	miles	travelled	per	vehicle	for	the	year	2013	in	U.S.	was	11,346	miles	which	is	around	31	
miles	per	day.	In	the	dataset	used	for	the	research	study,	the	annual	number	of	miles	travelled	
per	vehicle	in	the	whole	U.S	was	determined	to	be	around	11,455	miles	which	comes	to	around	
31	miles	per	day.	In	comparison,	for	Hawaii	the	annual	vehicle	miles	of	travel	per	vehicle	
(includes	all	classes	of	vehicles)	is	reported	by	the	State	of	Hawaii	Data	Book-2014	[46]	to	be	
around	9,006,	which	is	around	24.67	miles	per	day.	Almost	53%	of	the	total	vehicles	included	in	
this	study	drive	less	than	30	miles	per	day,	with	the	most	common	daily	mileage	range	being	
20-25	miles	as	shown	in	Figure	16.	This	is	an	important	parameter	in	the	study	as	the	number	of	
miles	driven	by	vehicles	is	needed	to	calculate	the	energy	required	for	charging	the	vehicle	
battery.		

Table	23.	Average	Vehicle	Miles	Travelled	in	U.S	-	2013	
 

 
 
 
 
 
 
 

Vehicle	Type	 Number	of	Vehicles	 Percentage	

Automobile/car/station	wagon	 107643	 53.90%	

Van	(mini,	cargo,	passenger)	 16517	 8.27%	

Sports	utility	vehicle	 44076	 22.07%	

Pickup	truck	 31476	 15.76%	

Average	vehicle	miles	
travelled	per	vehicle	

U.S.	-	2013	

DOT	FHWA		

[51]	

2009	NHTS	processed	
Dataset	

Annual	 11,346	 11,445	

Daily	 31.08	 31.36	
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Figure	16.	Miles	Driven	per	Day	

3.1.2.3				Driving	Range	
Compared	to	the	continental	U.S.,	Hawaii	being	a	chain	of	islands	have	limited	driving	

ranges.	Based	on	[55],	most	light,	medium,	and	heavy	duty	EVs	tend	to	target	a	range	of	about	
100	miles	on	a	fully	charged	battery,	although	range	may	depend	on	specific	driving	conditions	
and	habits.	An	analysis	done	in	comparing	the	driving	ranges	of	most	of	the	current	Plug-In	
Electric	Vehicles	models	of	2014	and	2015,	which	includes	both	Battery	EVs	(BEVs)	and	Plug-in	
hybrid	EVs	(PHEVs)	have	all-electric	driving	range	of	11-38	miles	and	62-265	miles	respectively	
[56]	[57].	Although	most	of	the	mainstream	affordable	EV	market	primarily	falls	under	the	100-
mile	EV	range,	Tesla	with	its	Model	S	has	managed	to	break	into	the	200	mile	range	EV	market,	
although	the	price	has	been	on	the	expensive	end.	With	recent	advances	in	research	in	battery	
technologies,	the	automobile	industry’s	goal	is	to	bring	down	the	cost	and	also	increase	the	
driving	range	so	as	to	make	electric	cars	more	alluring	to	potential	customers.	In	order	to	
represent	the	mainstream	EV	market,	the	driving	range	for	EVs	and	the	All-Electric	Range	(AER)	
in	the	case	of	PHEVs,	was	fixed	to	a	maximum	of	100	miles.	
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Figure	17.	Electric	Vehicle	Driving	Ranges	

3.1.2.4				Battery	Capacity	
	

The	type	of	Electric	Vehicle	has	a	direct	impact	on	the	battery	capacity	of	a	vehicle.	
Battery	sizes	differ	according	to	the	type	of	the	vehicle.	For	example,	the	battery	size	of	a	SUV	
such	as	Tesla	S	is	considerably	higher	than	a	compact	hatchback	like	Nissan	Leaf.	Therefore,	
assigning	a	battery	capacity	to	the	different	classes	of	vehicle	(as	shown	in	the	section	3.1.2.1)	
considered	in	this	study	is	important	in-order	to	determine	the	energy	needed	to	charge	the	
EVs.	Reports	[26]	[53]	published	by	The	Pacific	Northwest	National	Laboratory	(PNNL)	have	
used	“Energy	Efficiency”	and	“optimal	range”	of	different	vehicle	classes	to	calculate	the	
battery	capacity	of	that	particular	vehicle.	Thus,	now	battery	capacities	for	each	vehicle	class	
can	be	determined	by	combining	the	“energy	efficiency”	with	the	optimal	driving	range	as	
determined	in	the	driving	range	section	above.	The	size	of	battery	for	various	classes	of	EVs	
used	in	this	study	is	shown	in	Table	24.	
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Table	24.	Energy	Efficiency	and	Battery	Size	according	to	Vehicle	Type	

Vehicle	Class	
Energy	Efficiency	

[kWh/mile]	
Battery	Size	of	EV	with	
100	miles	range	[kWh]	

Compact	Sedan	 0.26	 26	

Mid-size	sedan	 0.30	 30	

Mid-size	SUV	 0.38	 38	

Full-size	SUV/Pickup	Truck	 0.46	 46	
 

Figure	18	shows	the	variations	in	Battery	Size	and	the	electricity	consumption	in	kWh	
per	100	miles	for	most	Electric	Vehicle	models	available	in	the	U.S.	market.	The	chart	is	
arranged	in	increasing	order	of	the	EV	model’s	electricity	consumption	in	kWh/100	miles.	With	
27	kWh	of	electricity	consumption	per	100	miles,	the	2015	BMW	i3	model	tends	to	have	the	
best	efficiency	in	the	current	market.	As	shown,	the	electricity	consumption	in	kWh/100	miles	
varies	between	the	various	models	depending	on	the	type	of	vehicle	and	ranges	from	27	kWh	
to	52kWh	per	100	miles.	The	data	for	this	comparative	analysis	was	collected	from	[56].	
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Figure	18.	Battery	Size	(kWh)	and	Electricity	Consumption	(kWh/100	mile)	

 

3.1.2.5				Potential	Charging	Windows/Time	Slots	
From	the	historical	vehicle	travel	data,	pre-processing	algorithms	were	used	to	perform	

operations	in	order	to	determine	the	list	of	all	potential	charging	timeslots/windows	available	
for	two	categories	of	charging	place	options:	1]	home	charging	and	2]	workplace	charging.	The	
methods	used	are	described	in	section	3.1.1.4.	The	potential	charging	timeslots/windows	were	
obtained	from	analyzing	the	data	about	time	when	the	vehicle	is	parked,	at	home	or	at	the	
workplace	after	a	home	trip	or	work	trip	respectively.	

3.1.2.6				Timestamp	Transformation	
The	timeslots/windows	which	have	a	start	time	and	an	end	time	in	which	the	EV	is	

parked	at	home	or	at	the	workplace	are	potential	candidates	for	either	home	or	workplace	
charging.	These	start	and	end	times	are	expressed	here	in	the	format	of	military	timestamps	
and	have	a	granularity	level	of	each	minute.	For	the	work	reported	here,	the	event	time	points	
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have	been	rounded	to	the	nearest	30–minute	timestamp.	This	aligns	the	potential	charging	
windows	to	48	time	intervals	of	each	30-minute	duration,	for	any	particular	travel	day.	

 
3.1.3				Charging	Characteristics	

3.1.3.1				State	Of	Charge	(SOC)	
SOC	is	defined	as	the	ratio	of	the	amount	of	energy	remaining	in	the	battery	to	the	total	

energy	in	the	battery	when	fully	charged.	It	can	be	determined	based	on	the	number	of	miles	
driven	by	the	vehicle	and	the	vehicle	range	of	the	EV.	Assuming	that	at	the	beginning	of	each	
travel	day,	the	battery	of	the	particular	EV	must	be	fully	charged	(SOC=	100%),	estimation	of	
SOC	is	important	as	that	would	help	us	to	estimate	the	state	of	the	battery	after	a	trip	is	
undertaken.  

 

SOC =
Total Driving Range –  Distance Driven 

Total Driving Range × 100 

 
In	this	study	the	driving	pattern	analysis	shows	the	number	of	miles	travelled	in	each	travel	day	
by	a	particular	EV.	Using	this,	the	total	amount	of	energy	needed	by	the	battery	for	that	
particular	travel	day	can	be	determined.	

3.1.3.2				Energy	Requirement	for	Battery	Charging 
The	amount	of	energy	used	by	the	battery	to	travel	the	total	number	of	miles	driven	in	

that	particular	travel	day	can	be	calculated	using	the	following	expression	below. 
 

Energy Used =
Distance Driven 

Total Driving Range × Battery Capacity 

 

Energy Needed for Charging =
Energy Used 

Battery Charging Efficiency  

	
The	total	energy	needed	to	fully	charge	the	EV	battery	is	calculated	using	the	above	

equation	where	the	efficiency	for	the	battery	charger	and	battery	over	a	round-trip	of	full	
charge	cycle	is	assumed	to	be	88%	[28].	It	is	also	assumed	that	the	total	battery	capacity	is	fully	
available	for	use	instead	of	the	usual	industry	practice	of	using	threshold	bands	of	20%	to	80%	
[53]	[58],	in	order	to	extend	the	battery	life.	The	study	also	assumes	that	vehicles	charge	only	
once	per	day	and	the	sampled	day	is	representative	of	their	typical	driving	pattern,	so	the	
charge	they	need	on	this	vehicle-day	is	equal	to	the	total	amount	of	electricity	consumed	
during	this	vehicle-day.	

3.1.3.3				Charging	Levels	
	

Various	charging	levels	have	been	used	in	multiple	different	studies.	Studies	conducted	
in	[59]	[60]	have	used	3	charging	levels	such	as	a)	1.4	kW	(120	VAC,	15A)	b)	2.0	kW	(120	VAC,	
20A)	and	c)	6kW	(208/240	VAC,	30A).	Similarly	the	study	performed	in	[61]	have	introduced	
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levels	of	1.4	kW	(120V,15	A)	,	1.9	kW	(120V,20A)	and	7.7	kW	(240V,40A).	Study	in	[62]	identifies	
three	levels	of	charging	based	on	the	voltage	and	power	levels	as	shown	in	Table	25.		

	
Table	25.	Levels	of	Charging	

Type	 Power	Level	

Level	1:	120	VAC	 1.2	–	2.0	kW	

Level	2	(low):	208-240	VAC	 2.8	-	3.8	kW	

Level	2:	(high):	208-240	VAC	 6	–	15	kW	

Level	3:	208-240	VAC	 >15	KW-96KW	

Level	3:	DC	Charging:	600VDC	 >15KW-240KW	
 

The	Society	of	Automotive	Engineers	(SAE)	have	been	instrumental	in	developing	major	
standards	for	Electric	Vehicles	and	Plug-in	Hybrid	Electric	Vehicles.	The	SAE	J1772	[63]	standard	
introduces	a	common	EV/PHEV	and	supply	equipment	vehicle	conductive	charging	method	to	
facilitate	conductive	charging	of	EV/PHEV	vehicles	in	North	America.	The	SAE	J1772	standard	
defines	the	following	levels	of	charging	[58]	[64]:	

	
• AC	Level	1:	On-board	charger	with	120	VAC,	1-phase	12	A	rate	with	a	15	A	Circuit	or	120	

VAC,	1-phase	16	A	rate	with	a	20	A	Circuit	with	configuration	powers	of	1.44	kW	and	
1.92	kW	respectively.	

• AC	Level	2:	On-board	208	to	240	VAC,	1-phase	up	to	and	including	80	A.	The	on-board	
charger	configuration	power	levels	of	3.3	kW	and	6.6	kW	have	current	settings	of	16	A	
and	30	A	respectively.	

• DC	Level	1:	The	EV	Supply	Equipment	(EVSE)	includes	an	off-board	charger	with	200	to	
450	VDC	with	a	rated	current	up	to	and	including	80	A,	with	configuration	power	levels	
of	19.2	kW	(residential)	and	36	kW	(public).	

• DC	Level	2:	The	EV	Supply	Equipment	(EVSE)	includes	an	off-board	charger	with	200	to	
450	VDC	with	a	rated	current	up	to	and	including	200	A,	with	configuration	power	up	to	
and	including	90kW.	

	
Although	charging	levels	can	potentially	reach	up	to	19.2	kW,	most	of	the	EVs	currently	

available	in	the	U.S.	market	have	on-board	chargers	of	3.3	kW	and	6.6	kW,	as	shown	in	Figure	
19	[56]	[57].	Higher	end	luxury	SUVs	like	Tesla	S,	Toyota	RAV4,	Mercedes	Benz	B-Class	have	on-
board	charger	of	10	kW.		In-order	to	represent	the	larger	EV	market	and	both	the	residential	
and	commercial	EV	charging	options,	the	Level	1	and	Level	2	charging	levels	shown	in	Table	26	
have	been	used	in	this	study.	
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Table	26.	Charging	options	

Charging	
Level	

Charging	
Location	 Power	Supply	 Power	Level	(kW)	

Level	1	 Residential	
120V	AC	

Single	Phase,	
12	Amp	

1.4	kW	

Level	2	
Residential/
Workplace/	
Commercial	

240V	AC	
Single	Phase,	

16	Amp,	30	Amp	

A]	3.3	kW	On-Board	Charger	

B]	6.6	kW	On-Board	Charger	
 
 

	
Figure	19.	Electric	Vehicle	Charging	Rates 

3.1.3.4				Charging	Infrastructure/Mode	
AC	Level	1	and	Level	2	charging	levels	are	more	practically	suitable	for	home	

environment	whereas	DC	Level	3	charging	(commonly	called	DC	Fast	Charging)	is	most	suitable	
for	public	or	commercial	charging	environments.	Level	1	charging	generally	refers	to	the	use	of	
a	standard	household	outlet	whereas	Level	2	charging	typically	offers	charging	for	residential	
applications	through	a	240	V	AC/	40	Amp	electrical	circuit,	(common	in	household	circuits	used	
for	heavy-duty	appliances	such	as	dryer,	stove	outlet)	[29]	or	208	V	electrical	service	line	for	
commercial	applications	[65].		
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Table	27.	Charging	Infrastructure 

	 Charging	Procedure	

Charging	Level	Mode	 Home	Charging	 Workplace	Charging	

Level	1	–	1.4kW	 10%	 0%	

Level	2a	–	3.3kW	 15%	 20%	

Level	2b	–	6.6kW	 75%	 80%	
 

In-order	to	have	a	definite	charging	option,	it	is	important	to	assign	various	modes	of	
charging	to	either	home	or	workplace	charging	scenarios/options.	The	vehicle	charging	
approach	structure	that	was	implemented	in	this	study	is	shown	in	Table	27.	AC	Level	2	
charging	has	often	been	considered	the	most	common	overnight	charging	option	in	households	
[66]	considering	the	faster	charging	speeds	and	the	advantage	of	not	needing	any	extra	
charging	infrastructure.	According	to	[64],	customers	use	residential	chargers	for	around	60-
80%	of	their	charging	sessions	and	AC	Level	2	is	the	preferred	choice.	The	shares	of	charging	
level	mode	as	shown	in	Table	27	were	chosen	to	be	broadly	consistent	with	[64]	[66]	and	
informal	discussions	with	EV	users.	

Analysis	done	on	the	data	sample	used	in	this	study	as	shown	in	Figure	20,	shows	that	
almost	5.57%	and	5.21%	of	the	total	vehicles,	which	are	potential	candidates	for	home	
charging,	are	parked	in	households	uninterruptedly	for	14	hours	and	14.5	hours	respectively,	
which	is	primarily	the	time	the	vehicle	was	parked	overnight	in	the	household	after	a	person	
returns	home	from	work.	Similarly	as	shown	in	Figure	21,	almost	10.88%	and	10.62%	of	the	
total	vehicles,	which	are	potential	candidates	for	workplace	charging,	are	parked	in	workplaces	
uninterruptedly	for	8.5	hours	and	9	hours	respectively,	which	is	consistent	with	standard	office	
timings.	Thus	although	EV	owners	charge	their	vehicles	at	home	primarily,	utilizing	charging	at	
work	could	potentially	extend	their	electric	driving	range	(not	discussed	here)	[67]	and	also	
allows	them	to	use	lower-cost	electricity	during	the	day.	
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Figure	20.	Distribution	of	vehicles	parked	at	Home	

 

 
Figure	21.	Distribution	of	vehicles	parked	at	Workplace 

 
The	following	steps	summarize	the	operations	performed:	

1. A	list	of	standardized	EV	models	was	created	that	could	be	used	to	replace	
gasoline/diesel	vehicles.	Each	of	these	vehicles	has	a	100-mile	range	and	a	particular	
efficiency.	

2. Using	a	range	of	pre-processing	operation,	analysis	of	the	trip	table	was	performed	and	
the	longest	periods	when	each	vehicle	is	parked	at	home	or	at	work	during	the	study-
date	was	determined.	

3. For	the	vehicles	that	could	be	replaced	by	EVs,	the	most	similar	standard	EV	in	the	list	
was	assigned	based	on	vehicle	type/class.	

4. The	total	amount	of	energy	that	is	needed	by	each	EV	during	the	study	day	was	then	
calculated.	

5. It	was	assumed	that	each	vehicle	could	be	replaced	by	an	EV,	with	two	exceptions:	
vehicles	that	drove	more	than	100	miles	during	the	vehicle-day,	and	the	vehicles	that	
need	more	energy	than	they	could	obtain	from	a	Level	2b	charger	during	their	longest	
time	parked	at	home	or	at	work.	The	total	resulting	EV	fleet	distribution	according	to	
the	location	of	charging	is	shown	in	Table	28.	

	

Table	28.	Feasible	EV	fleet	Charging	Distribution	

Charging	Location	 Number	of	Vehicles	 %	of	Total	

Home	Charging	 137146	 68.67%	

Workplace	Charging	 62566	 31.33%	
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Total	 199712	 100%	
	

6. Depending	on	the	total	amount	of	energy	needed	by	a	particular	EV,	and	the	longest	
available	parking	time	at	home	or	at	work,	feasibility	of	charging	each	individual	EV	
using	level	1,	2a	or	2b	chargers	was	determined.	For	example,	if	an	EV	needs	12	kWh	of	
charging	and	is	parked	at	work	for	3	hours,	it	can’t	be	assigned	to	a	3.3	kW	(level	2a)	
workplace	charger	and	can	only	be	assigned	a	6.6	kW	(level	2b)	charger).	Similarly,	if	an	
EV	needs	10	kWh	of	charging	and	is	parked	at	home	for	8	hours,	charging	is	feasible	
using	either	level	1	(1.4	kW),	2a	(3.3	kW)	or	2b	(6.6	kW)	chargers.	

7. The	199,712	EVs	were	randomly	assigned	to	a	one	of	the	3	feasible	charging	strategy,	
according	to	the	charging	distribution	shown	in	Table	27.	

8. The	assignment	of	a	feasible	charging	strategy	to	each	EV	in	the	EV	fleet	was	performed	
as	follows:	

a) All	the	EVs	that	could	be	charged	at	home	at	Level	1	were	identified.	Randomly	
assign	from	among	the	vehicles	assigned	to	home	charging	to	achieve	the	H1	
percentage.	

b) All	the	remaining	EVs	that	haven’t	been	assigned	to	H1	that	could	feasibly	be	
charged	at	home	on	Level	2a	were	identified	and	were	assigned	to	achieve	the	
H2a	percentage.	

c) All	the	remaining	EVs	that	could	feasibly	be	charged	at	home	on	a	Level	2b	
charger	were	assigned	a	Level	2b	charger	to	make	the	H2b	percentage.	

d) The	above	process	was	repeated	for	EVs	that	are	parked	at	work	with	W2a	and	
W2b,	at	which	point	the	fleet	was	allocated	appropriately	according	to	Table	27	
and	Table	26.	

3.2				Oahu	Grid	Characteristics	
3.2.1				Hawaii	Electricity	Load	Profile	

The	hourly	electricity	load	data	for	Oahu,	were	obtained	from	filings	of	FERC	form	714	
[68]	for	the	year	ending	2014.	Electric	utilities	with	annual	peak	demand	over	200MW	are	
required	to	electronically	file	this	form	to	the	Federal	Energy	Regulatory	Commission	(FERC)	at	
the	end	of	each	year.	For	the	purpose	of	modeling	the	EV	charging	load	(represented	in	half-
hourly	time	intervals)	in	the	same	time	scale	as	that	of	system	demand,	time-averaged	half	
hourly	demand	data	were	obtained	from	the	hourly	dataset.		
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Figure	22.	Oahu	Electricity	Load	Profile	

  
3.2.2				Hawaii	Electricity	Price	Profile	

The	hourly	marginal	cost	of	electricity	was	obtained	from	the	hourly	balancing	authority	
area	system	lambda	data,	provided	in	the	FERC	form	714	[68]	for	the	year	ending	2014,	filed	by	
the	electric	utilities,	which	for	the	Island	of	Oahu	is	the	Hawaiian	Electric	Company	(HECO),	Inc.	
For	this	work,	assume	that	customers	face	hourly	dynamic	prices	that	are	equal	to	the	marginal	
cost	of	production.	These	price	values	are	expressed	in	units	of	$/MWh.		For	the	purpose	of	
modeling,	time-averaged	half	hourly	electricity	price	data	were	obtained	from	the	hourly	
dataset.	

	

	
Figure	23.	Oahu	Electricity	Price	Profile		

3.2.3				Existing	Power	Plants 
In-order	to	the	study	the	effect	of	large	scale	EV	deployment	to	the	electricity	grid,	the	

knowledge	about	the	current	electricity	grid	is	vital.		Data	about	all	existing	power	plants	and	
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generator	data	such	as	capacity,	heat	rate	and	technology	(prime	mover	and	energy	source)	for	
Oahu	were	obtained	for	the	year	ending	2012,	from	the	form	EIA-860	[69]	and	EIA-923	[70]	
which	are	the	Energy	Information	Administration’s	(EIA)	power	plant	survey	databases.	

For	all	the	plants	providing	intermittent	supply	of	power	(e.g.,	wind	or	solar),	the	
amount	of	power	produced	is	dependent	on	the	specified	hourly	capacity	factor.	These	hourly	
capacity	factors	depend	on	the	amount	of	wind	or	sunlight	at	a	particular	site	for	a	
corresponding	time	of	the	day.	Thus,	the	total	supply	of	power	from	an	existing	intermittent	
renewable	generation	project	is	a	fraction	of	the	installed	capacity	of	the	plant	(installed	
capacity	*	hourly	capacity	factor).The	hourly	power	production	(capacity	factor)	for	the	existing	
wind	and	solar	(Distributed	PV	and	Central	Station	PV	power	plants	in	Oahu	were	derived	from	
the	datasets	used	in	the	report	[71].	The	existing	renewable	energy	projects	included	210	MW	
of	customer-sited	solar	(distributed	PV),	5	MW	of	commercial	solar	and	99	WM	of	wind.	

Data	about	the	price	of	the	fuel	used	in	the	existing	power	plants	in	Oahu	was	also	
obtained	from	[71].	The	report	[71]	used	fuel	prices	of	biodiesel,	bio-crude,	high	sulfur	diesel,	
ultra-low	sulfur	diesel	(ULSD),	liquefied	natural	gas	(LNG),	low	sulfur	fuel	oil	(LSFO),	medium	
sulfur	fuel	oil	(MSFO),	and	low	sulfur	industrial	fuel	oil	(LSIFO)	from	Appendix	E-11:	Fuel	Costs	
Forecast	Data	of	the	2013	Integrated	Resource	Planning	("IRP")	Report	published	by	the	
Hawaiian	Electric	Companies	[72].	Coal	price	forecasts	were	obtained	from	Appendix	A:	Table	
A1	published	in	the	U.S.	Energy	Information	Administration's	(EIA's)	Annual	Energy	Outlook	
2014	(AEO2014)	[73].	Variable	operation	and	maintenance	costs	of	the	various	existing	power	
projects	(e.g.,	wear	and	tear	costs)	were	obtained	from	the	Consolidated	Unit	Information	
Forms	in	Appendix	K	(Supply-Side	Resource	Assessment)	of	the	2013	Integrated	Resource	
Planning	(IRP)	Report,	published	by	the	Hawaiian	Electric	Companies	[72]	and	from	Table	8.2	of	
the	‘Assumptions	to	the	Annual	Energy	Outlook	2014’	published	by	the	U.S.	Energy	Information	
Administration	(EIA)	[73].	

	
The	actual	variable	cost	per	MWh	of	electricity	generated	by	an	existing	power	plant	can	be	
calculated	as:	
 

variable_cost ($/MWh) =
variable_o_m_cost ($/MWh)  +
                                          fuel_cost ($/MMBtu) x  heat_rate (MMBtu/MWh)     

 
Where		
variable_o_m_cost	=	Variable	operation	and	maintenance	costs	each	existing	power	project	

($/MWh)	
fuel_cost	=	Fuel	cost	($/MMBtu)	
heat_rate	=	Heat	Rate	of	each	existing	power	plant	(MMBtu/MWh)	
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3.3				Model	Notations		
The	models	are	formulated	using	AMPL	12.2	and	are	solved	using	IBM	ILOG	CPLEX	

Optimization	Studio	12.5.1.	Some	of	the	main	elements	that	are	needed	to	represent	any	
constrained	optimization	problem	are:		

• Sets:	Sets	generally	represent	any	unordered	collection	of	objects	related	to	the	model.	
Individual	members	of	the	set	are	often	represented	by	indexing	variables.	

• Parameters:	Parameters	represent	any	numerical	value	pertinent	to	the	model.	They	
provide	input	data	for	solving	the	optimization	problem.	

• Decision	variables:	Decision	variables	are	a	set	of	quantities	that	need	to	be	determined	
in	order	to	find	an	optimal	solution	to	the	problem.	

• Objective	function:	Objective	function	of	a	linear	programming	model	is	a	mathematical	
expression	that	indicates	how	each	decision	variable	contributes	to	the	value	to	be	
optimized.	The	goal	of	the	objective	function	can	be	to	maximize	or	to	minimize	some	
numerical	value.	

• Constraints:	Constraints	are	mathematical	expressions	that	combine	the	parameters	
and	decision	variables	to	express	limits	on	the	possible	solutions.	

3.4				EV	Recharging	Scenarios		
3.4.1				Price-Taker	Model	

3.4.1.1				Optimized	Charging		
This	model	analyzes	a	scenario	in	which	EV	customers	are	offered	time-varying	prices	

depending	on	the	marginal	cost	of	producing	electricity	so	that	they	can	reduce	their	own	cost	
by	charging	at	times	when	the	price	of	electricity	is	lower.	This	tests	whether	dynamic	prices	
can	help	mitigate	the	amount	of	power	drawn	during	the	peak	periods	of	the	day.	This	optimal	
price-taker	charging	model	aims	to	analyze	the	potential	savings	for	EV	customers	by	obtaining	
an	optimal	charging	schedule	for	each	vehicle	with	time-varying	prices	but	not	on	a	large	
enough	scale	to	change	the	price	of	electricity.		
	

The	objective	of	this	optimization	is	to	derive	an	optimal	charging	schedule	for	each	EV	
that	minimizes	the	overall	cost	of	charging	using	the	marginal	cost	of	electricity.		The	decision	
variable	“EV_Charge_kw”,	provides	individual	charging	schedules	for	each	EV	during	each	of	the	
48	half-hourly	timeslots	to	represent	each	of	the	24	hour	study	date.	This	optimized	EV	
charging	schedule	can	potentially	reduce	costs	for	customers	by	using	the	time-varying	nature	
of	the	electricity	prices.		

	
3.4.1.1.1				Objective	Function	
The	objective	function	of	this	method	is:	
 

minimize (EV_Charge_kw!,!,! x energy_cost_mwh!,! x  length_of_tp_hr!,!) 
!,!  ∈ !"#$%&"'!(
! ∈ !"#$%&"'
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Table	29.	Decision	variables	in	Price-Taker	Model	

Decision	Variable	
Name	

Indexing	set	 Description	

EV_Charge_kw	 (VEHCILES,	
TIMEPOINTS)	

Number	of	KW	of	power	required	for	charging	
each	vehicle	(v)	during	each	timepoint	(t,	d)	of	
a	study	date.	

	
Table	30.	Sets	used	in	Price-Taker	Model	

Name	 Indexing	
variable(s)	 Description	 Definition	

DATES	 d	 Unique	ID	for	each	
sample	date	included	in	
the	study.	

Specified	along	with	
TIMEPOINTS:	{d:	(t,	d)	∈	
TIMEPOINTS}	

TIMEPOINTS	 (t,d)	 Valid	combinations	of	
timeslot	ID	(t)	and	day	(d)	
that	are	included	in	the	
model.	

Specified	exogenously.	
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Table	31.	Parameters	used	in	Price-Taker	Model	

Parameter	Name	 Indexed	over	 Description	 Definition	

energy_cost_mwh	 TIMEPOINTS	 The	marginal	cost	of	
electricity	derived	from	
the	“system	lambda”	
values,	expressed	in	units	
of	dollars	per	MWh.	

Specified	exogenously.	
Used	in	‘Fixed	Price’	
scenario	only.	

length_of_tp_hr	 TIMEPOINTS	 Length	of	timepoints.	 Specified	exogenously.	
Has	been	set	to	0.5	to	
represent	half	hourly	
time	intervals.	

	
3.4.1.1.2				Constraints	
The	price-taker	optimization	model	includes	the	following	constraints:		
	
3.4.1.1.2.1				EV	Constraints	
The	aim	of	the	EV	constraints	is	to	do	the	following:	
a) The	charging	power	level	for	each	EV	in	a	potential	charging	timeslot	should	be	less	than	or	

equal	to	the	maximum	charging	rate	that	is	allowed	for	that	particular	vehicle.	The	
maximum	charging	rates	that	have	been	considered	in	this	research	study	1.4	kW,	3.3	kW,	
and	6.6	kW	and	have	been	described	in	depth	in	the	section	3.1.3.4.The	maximum	charging	
rate	is	assumed	to	be	zero	when	the	EV	is	not	plugged	in	to	the	grid	for	charging.	

subject to for v in VEHICLES, t, d  in TIMEPOINTS :	
	

EV_Charge_kw!,!,! ≤ vehicle_timepoint_max_power_kw!,!,!,∀  v ∈ VEHICLES,  	
      (t, d) ∈ TIMEPOINTS	

 
The	components	have	been	described	in	the	tables	below.	

 
Table	32.	Sets	used	to	define	EV	Constraints	

Name	 Indexing	
variable(s)	 Description	 Definition	

VEHICLES	 v	 Unique	ID	assigned	to	
each	EV	included	in	the	
study.			

Specified	along	with	
VEHICLE_CHARGE_WINDOWS:	
{v:	(v,	d,	dwl_strt,	dwl_end)	∈	
VEHICLE_CHARGE_WINDOWS}		
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Table	33.	Parameters	used	to	define	EV	Constraints	(a)	

Parameter	Name	 Indexed	over	 Description	 Definition	

vehicle_timepoint
_max_power_kw	

(VEHICLES,	
TIMEPOINTS)	

Assigns	the	maximum	
allowed	charging	power	
for	valid	combinations	of	
vehicle	(v)	in	timepoints	
(t,d).	This	assignment	
handles	both	within-day	
charging	and	overnight	
charging	schedules	
depending	on	the	each	
vehicle’s	potential	
charging	windows.	
	

1.4 kW-Level	1	Charger	
3.3	kW-Level	2a	Charger	
6.6	kW-Level	2b	Charger	
	
	

 
 
b) The	main	aim	of	this	constraint	is	to	make	sure	that	the	sum	of	the	total	charging	done	in	all	

the	potential	time	slots	in	any	particular	travel	day	is	equal	to	the	total	energy	needed	for	
each	individual	vehicle,	which	has	been	pre-determined	from	the	historical	driving	pattern	
data	discussed	in	the	earlier	sections.	

     subject to for v in VEHICLES, d in DATES :	
	

(EV_Charge_kw!,!,!  x  length_of_tp_hr!,!) = charge_needed_kwh!,!  
!,!  ∈ !"#$%&"'!(

	

 
Table	34.	Parameters	used	to	define	EV	Constraints	(b)	

Parameter	Name	 Indexed	over	 Description	 Definition	

charge_needed_kwh	
	
	

VEHICLE_DATES_
FOR_CHARGING	

Amount	of	power	needed	to	
charge	each	vehicle	(v)	on	a	
particular	study	date	(d).	
Expressed	in	units	of	kWh.	

Specified	
exogenously.	

	

3.4.1.2				Business-As-Usual	(BAU)	Charging		
In	the	business-as-usual	charging	scenario,	EV	owners	are	assumed	to	charge	their	EVs	

right	after	they	reach	their	final	destination	(home	or	work).	The	charging	is	assumed	to	begin	
immediately	at	the	start	of	the	single	longest	period	when	each	vehicle	is	parked	at	home	or	at	
work	during	the	studied	vehicle-day.	This	scenario	is	modelled	to	replicate	the	normal	expected	
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charging	behavior	in	which	the	time-varying	prices	offered	in	the	price-taker	model	do	not	
affect	the	EV	owners	charging	decision.	

The	business-as-usual	charging	scenario	is	implemented	in	the	price-taker	model	by	
manually	setting	the	parameter	(‘EV_Charge_kw’)	to	a	default	charging	regime	that	charges	at	
the	maximum	rate,	starting	at	the	earliest	charge	window	and	continues	across	timepoints	and	
charge	windows	until	the	energy	requirement	is	fulfilled.	The	maximum	charging	rate	is	
assigned	depending	on	the	charger	used	i.e.,	either	Level	1-	1.4kW,	Level	2a	-3.3	kW	or	Level	2b	
-	6.6	kW	when	plugged-in	or	0	when	not	plugged-in.		The	same	set	of	constraints	and	objective	
function	are	used	as	in	section	3.4.1.1.1.	The	model	is	setup	in	the	similar	framework	as	in	
“optimized	charging”,	except	here	the	variable	representing	the	number	of	kW	of	power	
required	for	charging	each	vehicle	(v)	during	each	timeslot	(t,	d)	of	a	study	date	
(‘EV_Charge_kw’)	is	a	parameter	instead	of	a	decision	variable.		
	

Table	35.	Parameters	in	the	Business-As-Usual	Model	

Parameter	Name	 Indexed	over	 Description	 Definition	

EV_Charge_kw	 (VEHCILES,	
TIMEPOINTS)	

Number	of	KW	of	power	
required	for	charging	
each	vehicle	(v)	during	
each	timepoint	(t,	d)	of	a	
study	date.	

Calculated	according	
to	the	energy	required	
for	charging,	charger	
used,	and	charging	
window.	

	
3.4.2				Supply	Curve	Model	

3.4.2.1				Optimized	Charging	
	

In	the	supply	curve	model,	both	the	reschedulable	load	(EV	load)	and	the	power	
generated	by	each	generator	have	the	flexibility	to	change	in	each	timepoint	to	provide	the	
best	optimized	charging	schedule	for	each	vehicle,	minimizing	the	cost	of	charging	EVs.	The	
model	should	satisfy	the	fixed	system	electricity	demand	during	every	timepoint	of	the	day	and	
also	the	various	other	constraints.	The	model	selects	power	from	the	generators	which	have	
the	lowest	cost	of	generating	electricity	at	that	timepoint.		

This	model	chooses	an	optimal	charging	schedule	for	each	EV	that	minimizes	the	overall	
cost	of	charging	using	the	variable	cost	of	electricity	from	each	existing	generator,	as	
represented	by	a	stepped	supply	curve.	The	supply	curve	is	obtained	by	stacking	existing	
generators	in	ascending	order	of	their	variable	cost	(which	is	assumed	not	to	vary	with	their	
output	level).	Figure	24	represents	the	supply	curve	of	the	Oahu	power	system,	which	shows	
the	marginal	costs	of	power	production	and	the	generation	capacities	of	generating	plants,	
which	are	represented	as	a	step	in	the	curve.	The	generating	plants	are	differentiated	by	the	
technology	they	use	and/or	the	fuel	they	consume.	The	decision	variable	“EV_Charge_kw”,	
provides	individual	charging	schedules	for	each	EV	during	each	of	the	48	half-hourly	timeslots	
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to	represent	each	of	the	24	hour	study	date.	In	this	model,	the	EVs	charge	at	optimal	times	
from	the	generators	which	have	the	lowest	cost	of	generating	electricity.			

This	optimized	EV	charging	schedule	can	provide	considerable	savings	for	both	
customers	and	the	system	operator	(utility)	by	allowing	customers	to	charge	at	times	when	the	
electricity	is	generated	from	less	expensive	generators	and	the	service	provider	by	allowing	it	to	
serve	loads	using	generators	which	are	relatively	less	expensive	and	run	on	cleaner	source	of	
energy.	More	importantly,	this	model	can	show	the	optimal	charging	plan	and	cost	savings	
when	there	are	enough	EVs	to	shift	the	marginal	cost	of	power	production	each	hour.	
	

	
Figure	24.	Supply	Curve	of	the	Oahu	Power	System	

	
3.4.2.1.1				Objective	Function	
The	objective	function	of	this	method	is:	
 

minimize (DispatchGen!,!,! x variable_cost_per_mwh! x  length_of_tp_hr!,!) 
! ∈ !"#"$%&'$(
!,!  ∈ !"#$%&"'!(

 

	
Table	36.	EV	Decision	variable	in	Supply	Curve	Model	

Decision	Variable	
Name	

Indexing	set	 Description	

DispatchGen	 (GENERATORS,	
TIMEPOINTS)	

Number	of	MW	of	power	to	generate	from	
each	existing,	dispatchable	power	project	
during	each	timeslot.	
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Table	37.	Parameters	in	Supply	Curve	Model	

Parameter	Name	 Indexed	over	 Description	 Definition	

variable_cost_per_mwh	 GENERATORS	 The	variable	cost	per	
MWh	of	electricity	
associated	with	each	
generator.	This	
includes	fuel	and	
variable	O&M.	

Specified	exogenously.	
Calculated	as	
variable_cost_mwh	=	
variable_o_m_cost	
($/MWh)	+																																										
[fuel_cost	($/MMBtu)	x		
heat_rate	
(MMBtu/MWh)]					

	
	
3.4.2.1.2				Constraints	
	
The	supply-curve	optimization	model	includes	the	following	3	sets	of	constraints:		
	
3.4.2.1.2.1				EV	Constraints	
	
The	aim	of	the	EV	constraints	is	to	do	the	following:	
	
a) The	charging	power	level	for	each	EV	in	a	potential	charging	timeslot	should	be	less	than	or	

equal	to	the	maximum	charging	rate	that	is	allowed	for	that	particular	vehicle.	The	
maximum	charging	rates	that	have	been	considered	in	this	research	study	1.4	kW,	3.3	kW,	
and	6.6	kW	and	have	been	described	in	depth	in	the	section	3.1.3.4.	The	maximum	charging	
rate	is	assumed	to	be	zero	when	the	EV	is	not	plugged	in	to	the	grid	for	charging.	

subject to for v in VEHICLES, t, d  in TIMEPOINTS :	
	

EV_Charge_kw!,!,! ≤ vehicle_timepoint_max_power_kw!,!,!,∀  v ∈ VEHICLES,  	
      (t, d) ∈ TIMEPOINTS	

 
The	components	have	been	described	in	the	tables	below.	
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Table	38.	EV	Decision	variable	in	Supply	Curve	Model	

Decision	Variable	
Name	

Indexing	set	 Description	

EV_Charge_kw	 (VEHCILES,	
TIMEPOINTS)	

Number	of	KW	of	power	required	for	charging	
each	vehicle	(v)	during	each	timepoint	(t,	d)	of	
a	study	date.	

 
Table	39.	Sets	used	to	define	EV	Constraints	in	Supply	Curve	Model	

Name	 Indexing	
variable(s)	 Description	 Definition	

VEHICLES	 v	 Unique	ID	assigned	to	
each	EV	included	in	the	
study.			

Specified	along	with	
VEHICLE_CHARGE_WINDOWS:	
{v:	(v,	d,	dwl_strt,	dwl_end)	∈	
VEHICLE_CHARGE_WINDOWS}		

	
Table	40.	Parameters	used	to	define	EV	Constraints	(a)	Supply	Curve	Model	

Parameter	Name	 Indexed	over	 Description	 Definition	

vehicle_timepoint
_max_power_kw	

(VEHICLES,	
TIMEPOINTS)	

Assigns	the	maximum	
allowed	charging	power	
for	valid	combinations	of	
vehicle	(v)	in	timepoints	
(t,d).	This	assignment	
handles	both	within-day	
charging	and	overnight	
charging	schedules	
depending	on	the	each	
vehicle’s	potential	
charging	windows.	
	

3.4 kW-Level	1	Charger	
3.3	kW-Level	2a	Charger	
6.6	kW-Level	2b	Charger	
	
	

 
 
b) The	main	aim	of	this	constraint	is	to	make	sure	that	the	sum	of	the	total	charging	done	in	all	

the	potential	time	slots	in	any	particular	travel	day	is	equal	to	the	total	energy	needed	for	
each	individual	vehicle,	which	has	been	pre-determined	from	the	historical	driving	pattern	
data	discussed	in	the	earlier	sections.	

     subject to for v in VEHICLES, d in DATES :	
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(EV_Charge_kw!,!,!  x  length_of_tp_hr!,!) = charge_needed_kwh!,!  
!,!  ∈ !"#$%&"'!(

	

 
Table	41.	Parameters	used	to	define	EV	Constraints	(b)	in	Supply	Curve	Model	

Parameter	Name	 Indexed	over	 Description	 Definition	

charge_needed_kwh	
	
	

VEHICLE_DATES_
FOR_CHARGING	

Amount	of	power	needed	to	
charge	each	vehicle	(v)	on	a	
particular	study	date	(d).	
Expressed	in	units	of	kWh.	

Specified	
exogenously.	

 

3.4.2.1.2.2				Load-Serving	Constraints	
	
This	constraint	requires	that	power	generated	from	the	existing	power	plants	must	be	able	to	
satisfy	the	demand	for	power	during	each	timepoint	of	the	day.	The	total	system	load	at	each	
timeslot	constists	of	the	electricity	load	and	the	load	due	to	charging	EVs	at	that	particular	
timepoint	of	the	day.		Reserve	margins	have	not	been	considered	in	this	work	for	simplicity	but	
will	be	considered	for	future	work.		
	

subject to for t, d  in TIMEPOINTS :	
	

(EV_Charge_kw!,!,!/1000)+  system_load_mw!,!
! ∈ !"#$%&"'

= DispatchGen!,!,!
! ∈ !"#"$%&'$(

  	

	
Table	42.	Parameters	used	to	define	Load	Serving	Constraints	in	Supply	Curve	Model	

Parameter	Name	 Indexed	over	 Description	 Definition	

system_load_mw	 TIMEPOINTS	 Fixed	electricity	loads	during	
each	timepoint	(t,d).	

Specified	
exogenously.	

	
3.4.2.1.2.3				Maximum	Dispatch	Constraints	
	
This	constraint	ensures	that	the	power	produced	by	the	existing	dispatchable	and	baseload	
generators	does	not	exceed	their	nameplate	capacity.	For	plants	providing	intermittent	supply	
of	power	(e.g.,	wind	or	solar),	the	maximum	amount	of	power	that	can	be	generated	at	any	
particular	timeslot	is	a	fraction	of	the	installed	capacity	of	the	plant	(installed	capacity	*	
capacity	factortimeslot).		
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subject to for g in GENERATORS, (t, d) in TIMEPOINTS :	 	

DispatchGen!,!,! ≤  if intermittent! =  0 	
then gen_size_mw!	
else (gen_size_mw!  x  ip_cap_factor!,!,!)	

	
Table	43.	Parameters	used	to	define	Maximum	Dispatch	Constraints	in	the	Supply	Curve	Model	

Parameter	Name	 Indexed	over	 Description	 Definition	

gen_size_mw	 GENERATORS	 Maximum	possible	power	
output	from	each	power	
plant.	

Specified	exogenously.	

intermittent	 GENERATORS	 Flag	to	identify	
intermittent	power	plants	
(e.g.,	wind	or	solar).	

Specified	exogenously.													
1	–	intermittent,	
0	–	non-intermittent	

ip_cap_factor	 (GENERATORS,	
TIMEPOINTS)	

Capacity	factor	(power	
production	as	a	fraction	of	
plant	size)	for	each	
existing	intermittent	
generation	project	(g)	
during	each	timepoint	
(t,d).	

Specified	exogenously	

	

3.4.2.2				Business-As-Usual	(BAU)	Charging		
In	the	business-as-usual	charging	scenario,	EV	owners	are	assumed	to	charge	their	EVs	

right	after	they	reach	their	final	destination	(home	or	work).	The	charging	is	assumed	to	begin	
immediately	at	the	start	of	the	single	longest	period	when	each	vehicle	is	parked	at	home	or	at	
work	during	the	studied	vehicle-day.	This	scenario	is	modelled	to	replicate	the	normal	expected	
charging	behavior	in	which	the	supply-curve	model	does	not	affect	the	EV	owners	charging	
decision.	

The	business-as-usual	charging	scenario	is	implemented	in	the	supply-curve	model	by	
manually	setting	the	parameter	(‘EV_Charge_kw’)	to	a	default	charging	regime	that	charges	at	
the	maximum	rate,	starting	at	the	earliest	charge	window	and	continues	across	timepoints	and	
charge	windows	until	the	energy	requirement	is	fulfilled.	The	maximum	charging	rate	is	
assigned	depending	on	the	charger	used	i.e.,	either	Level	1-	1.4kW,	Level	2a	-3.3	kW	or	Level	2b	
-	6.6	kW	when	plugged-in	or	0	when	not	plugged-in.	The	analysis	uses	the	same	set	of	
constraints	and	objective	function	as	used	in	section	3.4.1.1.1.	The	model	is	setup	in	the	similar	
framework	as	in	“optimized	charging”,	except	here	the	variable	representing	the	number	of	kW	
of	power	required	for	charging	each	vehicle	(v)	during	each	timeslot	(t,	d)	of	a	study	date	
(‘EV_Charge_kw’)	is	a	parameter	instead	of	a	decision	variable.		
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Table	44.	Parameters	used	in	BAU	charging	of	the	Supply	Curve	Model	

Parameter	Name	 Indexed	over	 Description	 Definition	

EV_Charge_kw	 (VEHICLES,	
TIMEPOINTS)	

Number	of	KW	of	power	
required	for	charging	
each	vehicle	(v)	during	
each	timepoint	(t,	d)	of	a	
study	date.	

Calculated	according	
to	the	energy	required	
for	charging,	charger	
used,	and	charging	
window.	
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CHAPTER	4.	EXPERIMENTAL	RESULTS	AND	ANALYSIS 

4.1				Impact	on	Load	Profile 

4.1.1				Price-Taker	Model	
The	impact	of	the	EV	fleet	using	the	price-taker	model	on	the	total	system	demand	is	

shown	in	Table	45.	During	the	evening	priority	peak	period	(5:00	pm	–	9:00	pm),	EV	charging	
using	the	business	as	usual	charging	plan,	increases	the	evening	peak	load	by	an	additional	1.35	
GW	on	top	of	the	normal	system	load	whereas	the	optimized	charging	plan	adds	just	around	79	
MW	in	the	same	period.		The	price-taker	optimized	scenario	is	thus	able	to	successfully	shift	the	
majority	of	the	priority	and	mid	peak	period	load	to	the	off-peak	period.		The	load	in	the	off-
peak	period	is	mostly	due	to	home	charging	whereas	the	mid-peak	period	load	is	strongly	
attributed	to	work-place	charging.	

The	Business-As-Usual	(BAU)	charging	schedule	as	shown	in	Figure	25,	is	able	to	closely	
model	the	common	household	driving	pattern	in	the	U.S.	The	morning	charging	peak	is	
represented	by	the	charging	that	is	done	prevalently	when	drivers	reach	their	workplace	and	
instantly	plug-in	their	vehicles	for	charging.	Similarly	after	the	final	trip	of	the	day	when	drivers	
arrive	home	and	the	significant	load	due	to	EV	charging	is	aptly	represented	by	the	large	
evening	peak	load.		

The	optimized	charging	schedule	is	able	to	successfully	transfer/shift	the	bulk	of	the	
evening	peak	load	to	the	off-peak	periods	of	the	day	where	the	marginal	price	of	electricity	is	
considerably	cheaper	than	the	other	periods	of	the	day	which	is	evident	from	Figure	23,	
represented	in	section	3.2.2.	A	portion	of	the	load	in	the	priority	peak	period	has	been	also	
shifted	to	the	mid-peak	period	where	the	marginal	prices	of	electricity	are	the	second	best	
favorable.		

Table	45.	Average	Daily	EV	Load	Distribution	using	Price-Taker	model	

Time-of-Day	Rating	Period	 BAU	Scenario	
(MW)	

Optimized	Scenario	
(MW)	

5:00	pm	–	9:00	pm	
(Priority	Peak	Period)	

1354.42	 78.80	

7:00	am	–	5:00	pm											
(Mid	-	Peak	Period)	 2154.60	 1672.36	

9:00	pm	–	7:00	am	
(Off-Peak	Period)	 1089.21	 2847.08	
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Figure	25.	Average	System	Load	Profile	using	Price-Taker	model	

4.1.2				Supply	Curve	Model	
The	impact	of	the	charging	of	the	EV	fleet	using	the	supply	curve	model	on	the	total	

system	demand	is	shown	in	Table	46.	During	the	evening	priority	peak	period	(5:00	pm	–	9:00	
pm),	EV	charging	using	the	business	as	usual	charging	plan,	further	increases	the	evening	peak	
load	by	an	additional	1.35	GW	load	on	the	normal	system	load	whereas	the	optimized	charging	
plan	adds	just	around	130	MW	in	the	same	period.		The	demand	response	optimized	scenario	is	
thus	able	to	successfully	shift	the	majority	of	the	priority	and	mid	peak	period	load	to	the	off-
peak	period.		The	load	in	the	off-peak	period	is	mostly	due	to	home	charging	whereas	the	mid-
peak	period	load	is	strongly	attributed	to	work-place	charging.	

The	optimized	charging	schedule	is	able	to	successfully	transfer/shift	the	bulk	of	the	
evening	peak	load	to	the	off-peak	periods	of	the	day	where	only	those	particular	generators	
generating	electricity	at	a	considerably	cheaper	rate	are	used	than	the	other	periods	of	the	day	
where	the	cost	of	generating	electricity	is	considerably	higher.		

This	optimized	model	significantly	flattens	the	peaks	and	the	troughs	in	the	demand	
curve	as	compared	to	the	business-as-usual	scenario	as	shown	in	Figure	26.	Flattening	of	the	
demand	curve	helps	the	utility	to	get	rid	of	peak	demands	which	have	a	disproportionate	effect	
on	grid	capital	and	operational	costs,	including	transmission,	generation,	and	fuel	costs	[74].		
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Table	46.	Average	Daily	Load	Distribution	using	Supply	curve	model	

Time-of-Day	Rating	Period	 BAU	Scenario	
(MW)	

Optimized	Scenario	
(MW)	

5:00	pm	–	9:00	pm		
(Priority	Peak	Period)	

1354.42	 130.19	

7:00	am	–	5:00	pm											
(Mid	-	Peak	Period)	

2154.60	 2096.36	

9:00	pm	–	7:00	am											
(Off-Peak	Period)	

1089.21	 2371.68	

	
	

	

Figure	26.	Average	System	Load	Profile	using	Supply	curve	model	

4.2				Savings	
4.2.1				Price-Taker	Model	

The	price-taker	optimized	scenario	allows	the	residential	households	having	EVs	to	align	
their	charging	schedules	according	to	the	time-varying	prices	available	in	a	particular	day.	This	
time-varying	electricity	pricing	incentivizes	the	consumers	to	follow	an	optimal	charging	
schedule	for	each	vehicle	which	would	be	provide	them	with	substantial	savings	as	compared	
to	charging	EVs	in	the	business-as-usual	scenario.	As	reported	in	the	earlier	section,	the	optimal	
charging	schedule	shifts	majority	of	the	evening	peak	load	into	the	off-peak	periods	of	the	day	
where	the	marginal	price	of	electricity	is	considerably	cheaper.	For	the	study	year	2014,	this	
optimized	charging	profile	reduces	costs	for	EV	owners	by	35.45%	compared	to	the	business-as-
usual	(BAU)	scenario.	Figure	27	depicts	the	EV	charging	costs	in	both	Business-As-Usual	(BAU)	
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and	optimized	scenario	on	a	month	by	month	basis	for	the	study	year	2014;	it	also	shows	the	
savings	in	the	optimized	scenario	relative	to	business-as-usual.	Depending	on	variation	of	the	
historical	system	load	during	different	months	of	the	year	2014,	the	percentage	of	EV	savings	
also	varies,	ranging	from	a	high	of	57%	to	as	low	as	24%.		For	199,712	vehicles,	this	would	be	a	
total	savings	of	almost	$52	million	for	the	year	2014,	or	about	$20	per	month	per	vehicle.	These	
are	indicative	of	the	savings	that	are	available	for	the	first	few	EVs	added	to	the	system,	when	
there	are	too	few	to	shift	the	cost	of	production;	however,	they	are	not	likely	to	stay	at	this	
level	with	200,000	EVs	added;	that	is	discussed	in	the	next	section.		

	

	
Figure	27.	EV	Savings	from	Price-Taker	model	

	
4.2.2				Supply	Curve	model	

By	utilizing	the	optimized	charging	schedule,	the	supply	curve	model	is	successfully	able	
to	transfer	bulk	of	the	evening	peak	load	to	the	off-peak	periods	of	the	day.	This	shift	of	peak	
load	not	only	helps	in	flattening	of	the	peaks	in	the	demand	curve	but	also	provides	incentives	
in	terms	of	savings	to	both	the	EV	owners	and	the	utilities	by	allowing	the	EV	owners	to	charge	
their	EVs	at	those	optimal	time	periods	of	the	day	which	utilizes	those	particular	set	of	
generators	which	have	a	lower	cost	of	generating	electricity	than	the	other	periods	of	the	day	
where	the	cost	of	generating	electricity	is	considerably	higher.	

For	the	study	year	2014,	this	optimized	charging	profile	reduces	EV	charging	costs	by	
8.10%	compared	to	the	business-as-usual	(BAU)	scenario.	Figure	28	depicts	the	EV	charging	
costs	and	the	corresponding	savings	(percentage)	associated	in	both	Business-As-Usual	(BAU)	
and	optimized	scenario	on	a	month	by	month	basis	for	the	study	year	2014.	Depending	on	
variation	of	the	historical	system	load	during	different	months	of	the	year	2014,	the	percentage	
of	EV	savings	also	varies,	ranging	from	a	high	of	9.3%	to	as	low	as	7.2%.			

Figure	29		depicts	the	total	costs	incurred	to	supply	electricity	to	satisfy	both	the	fixed	
system	electricity	load	and	the	reschedulable	EV	load	in	both	Business-As-Usual	(BAU)	and	
optimized	scenarios	for	different	months	of	the	year	2014.	The	optimized	price-taker	scenario	
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results	in	providing	a	system	wide	savings	of	0.15%	as	compared	to	the	Business-As-Usual	(BAU)	
scenario	for	the	year	2014.	

	

	

Figure	28.	EV	Savings	from	Supply	curve	model	

These	savings	appear	much	lower	than	in	the	case	of	the	price-taker	model	because	EVs	
on	this	scale	push	up	electricity	production	costs	whenever	they	are	charged,	which	was	not	
factored	into	the	price-taker	model.	Comparing	the	price-taker	model	with	the	supply	curve	
model	shows	that	EV	scheduling	must	be	included	in	the	generator	optimization	each	day,	
rather	than	simply	computing	prices	without	considering	the	EVs,	and	then	hoping	EVs	will	
provide	an	optimal	response	[75].	
	

	

Figure	29.	Total	Savings	from	Supply	Curve	Model	
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CHAPTER	5.	CONCLUSIONS	

The	EV	model	developed	in	this	study	uses	actual	driving	pattern	data	collected	from	the	
2009	National	Household	Travel	Survey	(NHTS)	to	replicate	the	travel	pattern	behavior	in	
Hawaii.	For	each	individual	vehicle,	unique	driving	pattern	distributions	were	obtained,	based	
on	which	potential	EV	charging	windows	were	determined.	The	study	currently	assumes	two	
primary	locations	of	charging	i.e.	home	and	workplace.	It	can	be	later	extended	to	include	other	
non-primary	charging	locations	such	as	shopping	centers	etc.	The	detailed	DISTRIBUTIONS	OF	
individual	EV	charging	windows	developed	for	such	a	large	sample	data	set	of	vehicles	can	serve	
as	a	useful	data	repository	which	can	be	directly	used	by	other	researchers	and	policymakers	to	
analyze	new	charging	scenarios	in	order	to	provide	a	more	realistic	representation	of	the	EV	
electricity	demand	impacts	on	the	electricity	grid.	The	half-hourly	EV	load	profiles	derived	can	
also	be	directly	plugged	into	other	integrated	resource	planning	models	to	account	for	the	EV	
charging	load	in	the	present	or	over	a	specified	future	planning	period.		

Rather	than	assuming	all	the	vehicles	drive	the	same	daily	distance,	each	vehicle	is	
modelled	individually,	which	helps	in	achieving	a	more	accurate	and	realistic	estimation	of	the	
amount	of	energy	needed	to	charge	each	individual	EV.	The	charging	is	also	dependent	on	the	
different	classes	of	passenger	vehicles	(car,	van,	SUV,	pick-up	truck),	location	of	charging	(i.e.	
home	and	workplace	charging),	charging	rates	(1.4kW/3.3kW/6.6kW)	and	plug-in	times.	Two	
different	optimized	smart	recharging	scenarios	were	then	implemented	and	their	effect	on	the	
system	load,	and	power	system	costs	were	then	compared	with	a	business-as-usual	(BAU)	
charging	scenario.	

The	optimized	price-taker	model,	which	provides	an	optimal	charging	schedule	by	using	
time-varying	prices	depending	on	the	marginal	cost	of	electricity	derived	from	the	“system	
lambda”	values,	was	able	to	successfully	transfer	bulk	of	the	evening	peak	loads	to	the	off-peak	
periods	of	the	day,	thus	being	able	to	achieve	considerable	EV	savings	as	compared	to	the	BAU	
scenario.	This	particular	model	would	very	much	appeal	to	the	residential	households	having	
EVs	to	readjust	their	charging	schedules	according	to	the	time-varying	prices	available	in	a	
particular	day.	This	reflects	the	opportunities	available	to	early-adopters,	but	not	for	larger	
vehicle	fleets.	

As	evident	from	results	earlier,	the	integrated	supply-curve	model	successfully	flattens	
out	the	peak	demand	during	the	priority	peak	period	(5:00	pm	–	9:00	pm),	without	creating	a	
new	peak	during	the	night.	This	is	achieved	by	scheduling	the	EV	owners	to	charge	at	times	
when	electricity	is	generated	from	less	expensive	generators	as	compared	to	charging	in	those	
periods	where	the	cost	of	generating	electricity	is	considerably	higher.	This	demand	flattening	
not	only	helps	the	EV	owners	in	residential	households	in	terms	of	savings	but	also	helps	the	
utility	by	making	the	grid	smarter	and	more	efficient.	This	also	gives	a	more	realistic	estimate	of	
the	savings	available	with	high	penetration	of	EVs	(on	the	order	of	200,000	among	Oahu’s	
310,000	households)	[76].	

As	Hawaii	strives	towards	becoming	the	first	state	in	the	U.S.	to	generate	100	percent	of	
its	electricity	from	renewable	energy	by	2045,	but	also	in	a	global	scenario,	electrification	of	the	
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transportation	sector	combined	with	integration	of	more	renewable	energy	resources	into	the	
power	system	have	been	considered	to	be	the	most	promising	solutions	to	achieve	the	carbon	
emissions	goal	of	limiting	the	average	global	temperature	to	2°	C.	With	its	unique	geography	
and	current	fossil	fuel	based	energy	infrastructure	combined	with	its	aggressive	energy	goals,	
Hawaii	forms	an	ideal	site	for	large	scale	adoption	of	EVs	in	the	future.	

By	developing	a	comprehensive	Hawaii	specific	EV	and	power	system	model,	this	
research	study	analyzed	the	impacts	of	large	scale	adoption	of	EVs	on	system	load	and	provides	
a	better	understanding	as	to	how	different	optimally-timed	EV	charging	can	benefit	such	a	
unique	power	system.	
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